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Abstract: One of the toughest biometrics and document forensics problems is confirming a signa-
ture’s authenticity and legal identity. A forgery may vary from a genuine signature by specific
distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and
forged signatures for secure work and economic growth, but this is particularly difficult in writer-
independent tasks. We thus propose an innovative and sustainable writer-independent approach
based on a Siamese neural network for offline signature verification. The Siamese network is a
twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed
to this network, and the Euclidean distances between them are calculated. The distance is reduced
for identical signatures, and the distance is increased for different signatures. Three datasets, namely
GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed
model was analyzed by comparing the results of different parameters such as optimizers, batch size,
and the number of epochs on all three datasets. The proposed Siamese neural network outperforms
the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well
for the Hindi and Bengali datasets while considering skilled forgeries.

Keywords: signature verification; two-channel; Siamese network; convolutional neural network;
deep learning

1. Introduction

Biometric identifiers, such as a signature, have been used for centuries to validate
a variety of human entities, including papers, forms, and bank checks. However, much
effort is being made to eliminate the inherent ambiguity in the human verification pro-
cess, making signature verification a significant study area in computer vision or pattern
recognition [1]. There are two types of signature verification based on the input format:
(1) online and (2) offline. Acquiring an online signature requires a digital writing pad and
a digital stylus that may continuously monitor the electronic pen tip during signatures.
Besides the signature’s writing characteristics, these devices may also retrieve information
such as writing speed, pressure, and so on, which is utilized in online systems. Offline
signatures are often recorded by a device, usually a scanner or other imaging technology
that provides 2D signature pictures. For decades, verification of signatures has been a
critical issue for study, and significant hard work has been undertaken for offline and online
signature verification purposes [2]. Verifying an offline signature is the only choice in many
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circumstances, such as check dealings and document authentication. This work emphasizes
the most challenging automated offline signature verification job due to its more extensive
application range [3]. The primary goal of signature verification is to identify forgeries.
Forgeries may be categorized as random, simple/casual, and skilled. The forger in random
forgeries knows nothing about the user; they do not know their name or signature. As a
result, he/she substitutes his/her signature with a legitimate one. In simple forgery, the
forger is aware of the individual’s name but is unaware of his/her writing style. In the case
of skilled forgery, the forger has detailed knowledge of the person’s name and signature
and practices copying that signature. This forgery is more challenging to identify since it
is precisely similar to a genuine signature [4]. Our goal is to present a Siamese network
model based on the convolutional neural network that can distinguish between authentic
signatures and skilled forgeries. There are primarily two approaches to the process of signa-
ture verification. The first is writer-dependent, and the second is writer-independent. The
writer-independent situation is superior to writer-dependent, as a writer-dependent system
requires constant updating (retraining) with each new writer (signer). This is highly costly
for a system, such as a bank, where a new customer might create daily accounts. In the case
of a writer-independent system, the general approach is to simulate the disparity between
a genuine and a forged signature [5]. The signers are divided into training and testing sets
when developing an authentication model in a writer-independent environment.

Signature images are grouped as similar (genuine–genuine) and dissimilar (genuine–forge)
signature pairs for each signer. To balance the cases, equal numbers of similar and distinct
pairs are randomly picked up from a single user’s possible pairs. This technique is repeated
for each signer in the training and testing sets to create the classifier’s training and testing
instances. For example, a signature verifier may be easily simulated using a Siamese neural
network, consisting of identical convolutional neural networks that accept two unique
signature pictures derived from the same or different users. The underlying CNN is then
linked at the top by a cost function that calculates a distance metric among the maximum
level of feature representations on either side of this neural network. As a result, the
parameters of these twin networks are identical [6]. The main contribution presented in
the manuscript is a two-channel convolutional Siamese network-based model proposed
to solve the challenges of offline signature verification in a distributed environment. The
proposed model’s performance was simulated using different parameters such as batch size,
optimizer, and number of epochs. The proposed model was evaluated for three languages:
Hindi, Bengali, and English.

The remainder of this paper is laid out as follows. The related work is described in
Section 2. Section 3 represents the proposed Siamese neural network for offline signature
verification. Section 4 illustrates the experimental setup and results. Section 5 defines the
state of the art results. Finally, Section 6 concludes the whole paper.

2. Related Work

Signature verification can be performed using either handcrafted features or deep
learning. Many handcrafted features are available for offline signature verification, such as
block codes or wavelets and the Fourier series [7]. Many of them use the global signature
picture [7]. Other methods consider the location, tangent path, blob organization, linked
component, and the curvature of local features [8]. Projection and contour-based techniques
are also widely used for signature authentication [9]. In addition, signature verification
has seen a rise in the use of approaches based on direction profiles [9,10], surroundedness
features [11], grid-based methods [12], geometrical moment-based methods [13], and
texture-based features [14]. Several structural strategies that consider the links between
local variables are also examined for this purpose. Compact correlated features (CCFs)
have recently been presented as another example [15]. Indrajit Bhattacharya et al. proposed
a pixel matching technique-based offline signature verification and identification in 2013.
First, the user’s signature was compared to a sample signature kept in the database using
PMT (pixel matching technique). In 2016, Assia Hamadene et al. [16] suggested a one-
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class WI (writer-independent) approach with fewer references and feature distinction
methods using a threshold for classification. The contourlet transform-based directional
code co-occurrence matrix feature creation method is used in the suggested system [17].
In the same year, Hannes Rantzsch et al. developed a new technique for offline signature
verification, which is writer-independent. Deep metric learning was used to create the
signature embedding approach. By comparing genuine and faked signature triplets, the
scheme learned to insert signatures in a high-dimensional space and use the Euclidean
distance to measure their similarity.

Deep learning techniques such as Siamese-like networks are widely used for many
verification tasks, including online signature verification [17], face verification [18,19], etc.
In addition, one-shot image identification and sketch-based image retrieval tasks have also
been implemented [20,21]. Sounak Dey et al. published a writer-independent system for
offline signature verification jobs using a Siamese network based on convolution networks
in 2017. Siamese networks can be defined as two identical sub-networks with the same
weights used to learn a feature space with similar observations clustered together. This was
accomplished by revealing the network to a similar and dissimilar pair of statements and
reducing the Euclidean distance between the identical pairs while increasing it between
different pairs [22]. In 2019, Ramesh Kumar Mohapatra et al. developed a method for
learning characteristics from pre-processed authentic and forging signatures using con-
volutional neural networks (CNNs). The architecture leveraged the concept of having
several filters on the same level to make the network larger rather than deeper. The sug-
gested model was evaluated on CEDAR, the BH-Sig260 signature, and UTSig, all publicly
available datasets [23]. In 2019, Jahandad et al. introduced a method based on the GPDS
synthetic signature, the largest handwritten signature dataset. The dataset was used to
classify 1000 users’ signatures, with 24 original (or authentic) signatures and 30 forged
(or fraudulent) signatures for each user. In addition, CNN Inception-v1 and Inception-v3
were employed, which are two popular GoogLeNet architecture versions [24]. Amruta B.
Jagtap et al. proposed a work in 2020 that represented a Siamese neural network utilizing a
convolutional neural network as a sub-network. They proposed adding specific statistical
features and then the contrastive loss function to the Siamese network’s embedding vector.
The suggested network outperforms existing solutions in accuracy, FAR, and FRR [25].

It can be concluded from the literature that many techniques have been implemented
for verifying offline signatures, either handcrafted techniques or deep learning algorithms.
Although much has been accomplished in this area, there is still potential to improve the
verification system. In addition, the performance parameters can be increased. We thus
propose an approach for a more accurate classification of offline signatures.

3. Proposed Methodology

This section outlines the proposed methodology for verifying genuine and forged
signatures. Section 3.1 details the datasets used in this work. Section 3.2 explains the
pairing of genuine and forged signatures. Section 3.2 shows the pre-processing techniques
applied to the dataset. Section 3.4 represents the proposed two channel-based Siamese
neural network to verify genuine and forged signatures. Figure 1 depicts the block diagram
of the proposed methodology for verifying offline signatures.

3.1. Dataset Description

To analyze our proposed signature verification approach, we considered three widely
used benchmark databases: (1) GPDS Synthetic Signature Dataset (English), (2) BHSig260
(Hindi) signature corpus, and (3) BHSig260 (Bengali) signature corpus. Figure 2 shows
some of the genuine and forged signatures from each dataset.
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3.1.1. GPDS Synthetic (English)

The University of Valencia in Valencia, Spain, provided the Synthetic Grupo de Proce-
sado Digital de Seales (GPDS) dataset. A total of 4000 individuals comprise the GPDS
Synthetic dataset, with 24 real signatures of each individual and 30 skilled forgeries. As
a result, there are 216,000 images in the collection of real and fake signatures. Different
types of pens were used to sign each document. The collection’s signatures are available in
various sizes and are stored in the jpg format with a resolution equivalent to 600 dpi [26].

3.1.2. BHSig260 (Hindi)

There are 160 Hindi signatures in the BHSig260 (Hindi) signature collection [27]. The
authors used the same process as GPDS to create these signatures. There are also 24 genuine
and 30 fake signatures for each signer. There are 160 × 24 = 3840 real signatures and
160 × 30 = 4800 fake signatures. The Hindi dataset contains 8640 images in total.

3.1.3. BHSig260 (Bengali)

The BHSig260 signature collection contains 100 individuals’ signatures in Bengali [27].
The authors generated these signatures using the same procedure as GPDS and BHSig260
Hindi, with 24 real signatures and 30 forged signatures provided for each signer. As a result,
100 × 24 = 2400 genuine signatures and 100 × 30 = 3000 forged signatures are produced,
and the total number of images in the Bengali dataset is 5400.

To maintain balance in the datasets, 100 users from each dataset were utilized to
evaluate the proposed model. Therefore, the total number of images used from each dataset
is 5400.

3.2. Pairing of Signature Images

The proposed system is designed for writer-independent verification, so each dataset
is divided into training, test, and validation sets. Each dataset’s total number of users is 100;
they are divided as 80, 10, and 10 for training, testing, and validation, respectively. Since
the datasets contain 24 genuine and 30 forged signatures per user, 24C2 = 276 signature
pairs per user are genuine. Similarly, since all three datasets contain 30 forged signatures
per user, 24× 30 = 720 genuine–forge pairs can be selected for each signer. To match similar
and dissimilar categories, randomly, only 300 (genuine–forge) signature image pairs were
chosen for each writer in the dataset.

3.3. Pre-Processing

Pre-processing can be defined as a technique to improve data or make it more compati-
ble with the model. In addition, pre-processing procedures can be used to enhance the qual-
ity of data. The pre-processing techniques used in this work are resizing and normalization.

3.3.1. Resizing

The dimensions of the signature photos used in this investigation range from 153 × 258
to 819 × 1137. Because neural networks can only process pictures of the same size, all
images were downsized using bilinear interpolation to 155 × 220.

3.3.2. Normalization

The data were normalized, a common practice in CNN systems to ensure numerical
stability. To achieve rescaling, the pixel values were multiplied by a factor of 1/255 [24].

3.4. Proposed Siamese Deep Convolutional Neural Network

The Siamese network is a multilayer neural network composed of numerous convolu-
tional layers with varying sizes of kernels interspersed with pooling layers that summarize
and down-sample the output of the convolution layers before feeding it to the subsequent
layers. Additionally, rectified linear units are employed to obtain nonlinearity. We used
various convolutional kernels of size 3 × 3 in our experiment. Usually, a differentiable loss
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function is employed to enable gradient descent and optimization of the network weights.
Backpropagation is used to update the weights of different layers given a differentiable
loss function. Because optimization cannot be used for all training data when the training
set is vast, batch optimizations provide a viable alternative for network optimization.

The Siamese neural network architecture is a network design consisting of two identi-
cal subnetworks. The twin CNNs are configured identically, with similar parameters and
weight sharing. Parameter updates are replicated across both subnetworks. The proposed
model’s architecture is depicted in Figure 3. This methodology has been effectively applied
to reduce dimensionality in weak supervised metric learning [18] and to verify faces [19].
A loss function at the top connects these subnetworks by computing a similarity metric
based on the Euclidean distance among the feature representations on either side of the
Siamese network.
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The contrastive loss [15] is a loss function frequently employed in Siamese networks.

L(c, s1, s2) = (1− c)
1
2
(Dw)2 + (c)

1
2
{(max(0, m− Dw)}2 (1)

where c indicates whether or not two signature samples belong to the same category, s1 and
s2 are signatures, m defines the margin between them, and Dw represents the Euclidean
distance calculated in the feature space.

c = 0 i f ; s1, s2 = genuine, genuine (2)

c = 1 i f ; s1, s2 = genuine, f orge (3)

where s1 and s2 are sample signatures; if both the signatures are genuine, they are labeled
as 0, and if they are different, they are labeled as1.

In contrast to conventional techniques that allocate binary similarity labels to the
signature pairs, the Siamese network aims to bring the feature vectors nearer to input
signature pairs labeled as similar and to push feature vectors away from input pairs labeled
as dissimilar to improve classification accuracy. It is possible to think of each branch
of the Siamese network as a task that embeds the input signature image into a spatial
representation. Because of the loss function that has been chosen (Equation (1)), this space
has the characteristic that signature images of the same class (authentic signature for a
given writer) will be closer to each other than images of the same type but different writers
(forgeries or signatures of different writers). It is connected to the other branches by a
layer that calculates the Euclidean distance between the two points in the embedded space
between them. Then, a threshold value on the distance between them must be determined
to identify whether two photos belong to the same class (genuine, genuine) or a different
class (real, forge).

Table 1 summarizes the proposed model’s details and associated configurations. The
suggested CNN model’s fundamental architecture is composed of four convolutional
blocks. Each block is constructed using a combination of convolutional layers, top pooling
layers, and batch normalization. The number of filters following each convolution block
was doubled. The first block, for example, has a convolution layer with 32 filters; the second
block, 64 filters; the third convolution block, 128 filters; and the fourth convolution block,
256 filters. The rectified linear unit (ReLu) function activated each convolution layer.

Additionally, batch normalization was used for each convolutional and activation
layer. It is a technique that enhances the performance of a neural network by normalizing
the inputs in each layer to the point where the mean activation at the output is 0 and
the deviation is 1. Additionally, the model contains two instances of the dropout layer.
This layer sets input units to 0, randomly selected, with a rate-dependent frequency at
each phase during the training period, preventing overfitting. Finally, following the final
convolutional block, a fully linked network of two dense layers was created, the first with
1024 nodes and the second with 128 nodes, to account for the contrastive loss. This means
that the most significant feature vector learned from either side of the CNN has a length of
128 units.

4. Experiments and Results

This section discusses the tests conducted with various parameters such as optimiz-
ers, batch size, and the number of epochs for Hindi, Bengali, and GPDS datasets and
their outcomes.

4.1. Hyper Parameters

Along with understanding the network’s design, it is critical to understand the model’s
implementation and performance, including the complexities of the training process itself.
The network was built entirely from scratch without the aid of pre-trained transfer learning
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models. Instead, the selection of training hyperparameters was based on experimentation
(Table 2). The model’s weights were set via Golort initialization [28].

Table 1. The architecture of the proposed Siamese model.

Block Layers Input Size Filter Size Activation
Function Output Size No. of

Parameters

Conv Block 1

Input image 155 × 220 × 1 —– —– —–

Conv1 155 × 220 × 1 3 × 3 ReLu 77 × 109 × 32 320

Batch_normalization_1 77 × 109 × 32 —– —– 77 × 109 × 32 128

Max_pooling2d_1 77 × 109 × 32 3 × 3 —– 38 × 54 × 32 0

Zero_padding2d_1 38 × 54 × 32 —– —– 42 × 58 × 32 0

Conv Block 2

Conv2 42 × 58 × 32 —– ReLu 40 × 56 × 64 18,496

Batch_normalization_2 40 × 56 × 64 —– —– 40 × 56 × 64 256

Max_pooling2d_2 40 × 56 × 64 3 × 3 —– 19 × 27 × 64 0

Dropout_1 19 × 27 × 64 0.3 —– 19 × 27 × 64 0

Zero_padding2d_2 19 × 27 × 64 —– —– 21 × 29 × 64 0

Conv Block 3
Conv3 21 × 29 × 64 3 × 3 ReLu 19 × 27 × 128 73,856

Zero_ padding2d_3 19 × 27 × 128 —– —– 21 × 29 × 128 0

Conv Block 4

Conv4 21 × 29 × 128 3 × 3 ReLu 19 × 27 × 256 295,168

Max_pooling2d_4 19 × 27 × 256 3 × 3 —– 9 × 13 × 256 0

Dropout_2 9 × 13 × 256 —– —– 9 × 13 × 256 0

Flatten —– —– —– 29,952 0

Dense_1 —– —– —– 1024 30,671,872

Dense_2 —– —– —– 128 131,200

Table 2. Values of hyperparameters.

Hyperparameters Values

Initial Learning Rate (LR) 0.001
LR Schedule LR × 0.1

Weight Decay 0.0005
Fuzz Factor 0.00000001

The model was created using Python and the Keras Tensorflow Package. Keras is a
freely available, easy-to-use framework optimized for neural network development. It
is freely available and compatible with both Theano and Tensorflow. In addition, it is
optimized for deep neural network computations. The Google Colab Platform was used to
conduct all simulations in this work, with a Colab notebook equipped with Tensorflow and
a GPU.

4.2. Analysis Based on Different Parameters

The proposed model was evaluated based on three different parameters. Firstly, the
best optimizer was selected by comparing three different optimizers: RMS prop, Adam,
and SGD. Then, three different batch sizes were compared: 128, 64, and 32. The final
analysis was based on the number of epochs: 5, 10, and 15. This section contains all the
results obtained from the analysis.

4.2.1. Accuracy Analysis Based on Different Optimizers

Three different optimizers were used for the evaluation of the proposed Siamese
network, namely RMS [29], Adam [30], and SGD [31], on three different language datasets,
Hindi, Bengali, and GPDS (English). Table 3 shows the accuracy obtained from different
optimizers on all three datasets. The table shows that the best results were obtained using
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RMS optimizers, and the worst results were obtained from Adam. The best accuracy is
from RMS and the GPDS dataset, with a value of 92%.

Table 3. Accuracy of different optimizers.

Dataset Name
Optimizers

Adam SGD RMS

Hindi 0.50 0.67 0.78

Bengali 0.50 0.68 0.80

GPDS 0.65 0.80 0.92

4.2.2. Accuracy Analysis Based on Different Batch Sizes

After selecting the best optimizer, the analysis was performed by considering three
different batch sizes: 32, 64, and 128. These three batch sizes were taken for the datasets.
Table 4 shows the accuracy of the three different batch sizes for each dataset. From the table,
it can be concluded that batch size 128 gives the best results for all three datasets. Batch 32
also gives similar results to 128, but the best results were achieved with batch size 128.

Table 4. Accuracy of different batch sizes.

Dataset Name
Batch Size

32 64 128

Hindi 0.77 0.76 0.78

Bengali 0.80 0.74 0.80

GPDS 0.88 0.75 0.92

4.2.3. Accuracy Analysis Based on Different Number of Epochs

The model was also analyzed by taking the different number of epochs. The model
was run for 5, 10, and 15 epochs for all three datasets. Table 5 shows the results. As can be
seen from the table, the best results were obtained by running the model for 10 epochs. If
the model was run more than this, it shows a decrease in accuracy; thus, 10 epochs were
chosen to run the model.

Table 5. Accuracy of different numbers of epochs.

Dataset Name
Number of Epochs

5 10 15

Hindi 0.77 0.78 0.75

Bengali 0.80 0.80 0.77

GPDS 0.85 0.92 0.92

4.3. Confusion Matrix Parameters for Best Optimized Model

The model’s performance can be analyzed by comparing the different performance
parameters, and the confusion matrix is shown in Figure 4 for the Hindi, Bengali, and
GPDS datasets. The total number of image pairs in the test set for all three datasets is 5760.
For example, in Figure 4a, representing the Hindi dataset, the total number of forge labels
is 2395, and that of genuine labels is 3365. Of these, 2023 pairs were true positive, 2454 were
true negative, 372 were false positive, and 911 were false negative.
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Figure 4b represents the Bengali dataset. Of 5760 image pairs, there are 3174 forged
signatures and 2586 genuine ones. A total of 2487 images were true positive, 687 were false
positive, 446 were false negative, and 2140 were true negative image pairs. In Figure 4c,
representing the GPDS dataset, the values of genuine–forge pairs are 2936 and 2824. The
values of true positive, false positive, false negative, and true negative are 2711, 225, 233,
and 2591, respectively.

Table 6 shows the different parameters obtained by the proposed Siamese model
for the three datasets. The performance parameters chosen for this study are precision,
sensitivity, specificity, F1 score, and accuracy, as discussed in the previous section. It can
be concluded from the table that the system gives the best results for the GPDS dataset in
terms of all the performance parameters.

Table 6. Performance parameters analysis for all three datasets.

Dataset Label Precision Sensitivity Specificity F1 Score Accuracy

Hindi
Forge 0.69 0.84 0.81 0.76

78%
Genuine 0.87 0.73 0.81 0.79

Bengali
Forge 0.85 0.78 0.84 0.81

80%
Genuine 0.76 0.83 0.82 0.79

GPDS
Forge 0.92 0.90 0.91 0.92

92%
Genuine 0.92 0.92 0.91 0.92
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Figure 5 shows the loss plot for the three datasets. Figure 5a shows the loss plot for
the Hindi dataset. Testing loss is less than training loss for the Hindi dataset. Figure 5b
shows the loss plots for the Bengali dataset. It can be seen that training and testing loss are
almost similar for the Bengali dataset. Figure 5c shows the loss plots for the GPDS synthetic
dataset. The training loss is less than the testing loss for this dataset, although the accuracy
obtained by the GPDS dataset is the highest of all three datasets.
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5. State of the Art Comparison

Table 7 shows the state of the art comparison for offline signature verification. The
proposed model has the maximum accuracy for the GPDS synthetic dataset. The Siamese
model was first implemented in 2017, named SigNet, and the accuracy achieved by SigNet
was 77.76% for the GPDS synthetic dataset. The Siamese model was also implemented
in the year 2020 by Jagtap et al., and they obtained an accuracy of 86.47%. Our proposed
Siamese model achieved an accuracy of 92% for the same (GPDS) dataset, which is the
highest compared with the literature. Furthermore, the proposed model achieved accuracy
of 80% and 78% for the Bengali and Hindi datasets, respectively.
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Table 7. State of the art comparison.

References Technique Dataset Used Accuracy Achieved

[6] SigNet GPDS synthetic, GPDS 300, Bengali,
Hindi, CEDAR

77.76%,
88.79%, 86.11%,
85.90%, 100%

[22] Siamese GPDS synthetic, MCYT 75 84.58%,
85.38%

[23] CNN (writer-independent
and writer-dependent) GPDS synthetic 62.5%,

75%

[24] Inception v1 and v3 GPDS synthetic 83%,
75%

[25] Siamese GPDS synthetic, MCYT 75, CEDAR 86.47%, 88.49%,
100%

Proposed model Siamese Neural Network GPDS synthetic, Hindi, Bengali 92%, 78%,
80%

6. Conclusions and Future Work

We propose a method for offline signature verification based on Siamese networks that
employ writer-independent feature learning. Unlike its predecessors, this technique does
not rely on handcrafted characteristics; instead, it learns from data in a writer-independent
situation. In the proposed technique, two similar CNNs were built with identical parame-
ters. Then, the image pair (genuine–genuine or genuine–forge) was fed to the model. A
contrastive loss using Euclidean distance was then calculated to classify the query image
as genuine or forged. The novelty of this work is the CNN model design from scratch,
which is used as the backbone of the Siamese network. Experiments were performed on
the GPDS Synthetic, Bengali, and Hindi datasets, considering different parameters such as
optimizers, batch size, and number of epochs. These experiments show that the proposed
model achieves the highest accuracy in detecting skilled forgeries in the English-language
GPDS synthetic dataset.

Furthermore, the proposed Siamese network outperformed the current state-of-the-
art techniques for GPDS synthetic signature datasets. However, the performance of the
proposed model is not satisfactory for the Hindi and Bengali datasets. In future work, we
will try to improve the results for Hindi, Bengali, and other datasets.
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