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Improvement of energy 
conservation using 
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In Smart Cities’ applications, Multi‑node cooperative spectrum sensing (CSS) can boost spectrum 
sensing efficiency in cognitive wireless networks (CWN), although there is a non‑linear interaction 
among number of nodes and sensing efficiency. Cooperative sensing by nodes with low computational 
cost is not favorable to improving sensing reliability and diminishes spectrum sensing energy 
efficiency, which poses obstacles to the regular operation of CWN. To enhance the evaluation and 
interpretation of nodes and resolves the difficulty of sensor selection in cognitive sensor networks 
for energy‑efficient spectrum sensing. We examined reducing energy usage in smart cities while 
substantially boosting spectrum detecting accuracy. In optimizing energy effectiveness in spectrum 
sensing while minimizing complexity, we use the energy detection for spectrum sensing and describe 
the challenge of sensor selection. This article proposed the algorithm for choosing the sensing 
nodes while reducing the energy utilization and improving the sensing efficiency. All the information 
regarding nodes is saved in the fusion center (FC) through which blockchain encrypts the information 
of nodes ensuring that a node’s trust value conforms to its own without any ambiguity, CWN‑FC pick 
high‑performance nodes to engage in CSS. The performance evaluation and computation results 
shows the comparison between various algorithms with the proposed approach which achieves 10% 
sensing efficiency in finding the solution for identification and triggering possibilities with the value of 
α = 1.5 and γ = 2.5 with the varying number of nodes.

In Smart Cities, Wireless networks have progressed quickly in the past years. Considering the natural frequency 
spectrum’s constraints, it’s clear that the present stagnant frequency allocation techniques won’t be able to accom-
modate a wide range of new wireless services. Cognitive radio emerges as a solution to this issue of spectral over-
load by allowing secondary users to utilize the unused portions of licensed spectrum  bands1. A cognitive radio, 
as a smart city wireless communication system, is cognizant of the radio frequency environment. It optimizes 
spectrum utilization by selecting communication characteristics (namely waveform, throughput, and power 
consumption). Spectrum sensing is among the most important aspects of cognitive radio technology. Attributed 
to the influence of geographic location on spectrum sensing, only one node’s sensing efficiency cannot be well 
attained, whereas multi-node CSS can resolve the sensing weaknesses of one node and make preparations by 
integrating information from various geographic  locations2. As a result, in cognitive wireless networks, multi-
node CSS is a widely utilized sensing technique that can successfully enhance perception reliability, but as the 
number of sensor nodes grows, so does the energy utilization of the cognitive wireless network, and because the 
front end of the cognitive network is a rechargeable battery, the energy utilization grows as well. Many enhanced 
ways are used to increase the lifetime of cognitive wireless  networks3. The technique of flipping on and off time 
is being used to prolong the lifetime of the cognitive network and hence reduces the perception efficiency which 
is ineffective for the spectrum access. Therefore, to lessen the cognitive network workload this technique uses 
integration between the nodes and the primary users.
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In4 for achieving the effectiveness, every secondary user doesn’t have to collaborate in the network, and 
secondary users with the strongest primary user’s signal-to-noise ratio (SNR) engage in spectrum sensing. In 
reduced SNR cognitive radio (CR) networks, the detecting efficiency for spectrum sensing is examined. However, 
this publication does not provide analytical formulations for their issues. The process in which the CR nodes 
choose the appropriate frequency band based on various parameters including the amount of time the spectrum 
is vacant or the available bandwidth is known as spectrum  selection5. The process in which CR nodes negotiate 
communication link with some other CR users is known as spectrum sharing. Blockchain can help to make this 
spectrum utilization efficient, thus helping directly to support B5G and 6G applications and services. In the previ-
ous works, the main problem is that the sensor nodes used for spectrum sensing have restricted energy budgets. 
They are usually powered by batteries, that must be replenished or refilled (e.g., using solar power) when they 
run out. Both options are not feasible for some nodes, which means they will be eliminated after their energy 
supply is exhausted.  In6 the nodes with low sensing capability would not aid cooperative sensing, but will have 
an impact on the fusion center’s overall judgment. As a result, nodes with inadequate sensing efficiency should 
be eliminated from cognitive wireless networks, and only the most consistent nodes should be chosen to engage 
in cooperative sensing. Nevertheless, the node’s efficiency is not static; it will fluctuate due to internal causes as 
well as changes in the external  environment7. As a result, the role of technological changes must be included in 
the real cognitive wireless radio which thereby enhance the sensing efficient.

Problem definition. In this article, a security-based CSS using blockchain for smart cities is developed for 
a cognitive wireless network consisting of a FC and cognitive sensors for spectrum sensing in a defined time 
period, thereby, we explore the challenge of reducing energy utilization in CSS. The developed technique can 
adapt to changes in the environment and adjust the number of sensor nodes engaging in CSS in real time, as 
well as analyze the consistency of sensing nodes in real time and calculate the node’s trust value using an node 
evaluation algorithm. This technique not only recalls each node’s energy utilization and sensing efficiency, but 
also its trust value. The trust value is maintained in the blockchain’s consistency list, which is encrypted by the 
blockchain’s management center to verify that each node conforms to its own trust value without ambiguity. 
Later, a fusion rule is used by FC to make the ultimate decision on the channel’s occupancy. We employ the 
energy detector for channel sensing since it is easy to install and does not require existing knowledge of the pri-
mary user signal. The energy received on a licensed band is evaluated using this technique. When the level rises 
beyond a predetermined threshold, it is considered as recognizing primary user transmissions; else, a spectrum 
hole is verified. The SNR and distance between each node and the FC are assumed to be known.

Main contributions. The main contributions of the paper are explained as follows: 

1. We have developed the secure spectrum sensing method for smart cities based on the performance of 
minimizing the energy utilization and accuracy of the blockchain-enabled cognitive wireless networks. This 
method will detect the probability of sensing all the nodes ensuring SNR which is computed by calculating 
the distance between the FC and each node.

2. The optimum result is based on cooperative sensing which changes the number of nodes participating and 
the method may adapt to changes in the environment and alter the number of sensor nodes engaged in 
cooperative sensing in real-time, as well as evaluate the actual dependability of sensing nodes, and the node’s 
trust value is determined using the node selection algorithm.

3. The optimum conditions acquired are based on the first-order necessary conditions, the algorithm that is 
developed to find the optimum nodes selection strategy.

4. To gain more energy efficiency, the method not only preserves each node’s energy utilization and sensing 
efficiency, but also its trust value. The trust value is maintained in the blockchain’s consistency list, which is 
encrypted by the blockchain’s management center to verify that each node conforms to its trust value without 
ambiguity.

5. The obtained simulations were utilized to evaluate the suggested algorithm’s performance in terms of finding 
the solution for the sensing nodes, energy utilization, and average number of sensing nodes.

The paper is represented as follows: section 2 demonstrates the background and motivation of the blockchain 
and CWN in blockchain; section 3 explains the design analysis of the proposed work; section 4 describes the 
flowchart for the evaluation and interpretation of nodes; section 5 shows the simulation results and evaluation 
of the performance; and lastly section 6 concludes the paper.

Background and motivation
Blockchain. Digital Ledger Technology (DLT) uses Peer-2-Peer (P2P) communication technologies to pre-
serve records and transactions in a dispersed, decentralized  way8. Data management and organizing in DLT 
can be accomplished in a variety of methods. Data can be maintained in a number of ways, including as a linear 
linked list of blocks or as a Directed Acyclic Graph (DAG)9. The term “blockchain” refers to the management of 
data is in the form of a linear linked list of blocks. One of the most distinguishing characteristics of blockchain 
is that it fully excludes the need of a trusted third party in the network’s  maintenance10.

A “block” is a building block of a blockchain network where transactions are constructed. Figure 1 depicts 
a blockchain network with multiple blocks interconnected (each block contains numerous transactions). To 
prevent tampering, these transactions are put together in a block utilizing cryptographic  methods11. The blocks 
are then combined together to form a  blockchain12. This linkage can be done in a variety of ways. One simple 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13013  | https://doi.org/10.1038/s41598-022-16916-7

www.nature.com/scientificreports/

method is to connect these blocks in a straight line. However, there could be concerns with sustainability, quick 
access to these blocks, and privacy.

Blockchain is also used from the context of spectrum licensing:

Licensed Spectrum Band: Only licensed users (also known as primary users) have accessibility to licensed 
frequency bands, and users without a valid license are not permitted to utilize licensed frequency bands. Users 
of licensed spectrum willing to obtain it in order to produce more money or to receive a financial incentive 
from the regulator in the form of lower license costs. When acquiring and exchanging licensed spectrum, 
cognitive radio (CR) users that want to use these licensed bands take into account a number of factors.
Unlicensed Spectrum Band: Users can use the spectrum without paying any fees or obtaining permission 
in the unlicensed spectrum concept, enabling anybody to easily utilize any piece of the unlicensed spectrum. 
Users in the unlicensed spectrum band seek to work together to ensure some quality of service, limit harmful 
interference, and minimize channel contention. From a licensing standpoint, blockchain can provide a critical 
part in these spectrum-sharing concepts.

Cognitive wireless networks in blockchain for smart cities. Constraining spectrum availability only 
to licensed users is a very ineffective use of resources, as actual dimensions show that such resources are left 
unused for extended  periods13. This observation, combined with the advancement of sophisticated nodes aware 
of exploring licensed spectrum and adapting transmission parameters correspondingly, inspired the concept of 
cognitive radio, in which the spectrum is made accessible to both licensed (also known as primary)users and 
unlicensed (secondary/cognitive) users who proactively obtain the sensed spectrum.

A cluster of neighboring nodes is formed in blockchain-enabled cognitive radio networks (CRN). These node 
groups are in charge of allocating radio resources within the group. Well within CRN, the nodes inside each group 
exchange information they expect to  use14. This set of resources will be vetted among group members first, but 
once resources have been allocated without dispute, they will be disseminated and added to the blockchain. The 
CRN will be able to allocate resources efficiently in this manner. All nodes in the network will be notified of which 
resources are assigned to which nodes, lowering the likelihood of a CRN clash. Secondly, because blockchain 
offers a replica of the ledger to every node (in this case, the copy of the ledger will constitute available resources 
to devices) as well as every CR node would have a broad perspective of assigned network resources, the entire 
network nodes would be informed of assigned resources amongst these CR  nodes15.

In this article, we have designed the architecture of blockchain-enabled CWN for Smart cities. The block-
chain’s management center, licensed users, FC and cognitive users (various clusters or nodes) are all included in 
the technique. Some clusters or nodes are in the spectrum detecting mode, while others are in the sleep mode. 
A centralized CSS mechanism is used in this  technique16. Only the FC and each node can share resources. Each 
node sensing data is delivered to the FC for evaluation, and the FC sends information back to each node. Since 
there is no immediate contact among nodes, a centrally controlled design aids in the efficient processing of data. 
The FC is accountable for not only communicating with the nodes but also with the blockchain management 
center, delivering node information to the management center for storing and having the blockchain manage-
ment center notify the FC with node information.

The blockchain management center and the FC play a significant role in determining which nodes are reliable. 
Figure 2 shows that not all nodes engage in cooperative sensing at the same time while some of the nodes are 
nodes  tampering17. Since the nodes are clustered and the node with the greatest trust value is chosen to engage 
in cooperative sensing, nodes’ tampering is excluded. The goal is to increase energy efficiency and extend the 
lifetime of the cognitive network. The energy utilization is lowered based on fulfilling the sensing efficiency.

Design analysis
In Fig. 3, we examine a network with C cognitive sensors and an FC. The frames time is denoted by F. We consider 
that almost all cognitive sensors have a similar spectrum sensing time, thus we employ ϕ , ϕ < 0 < F to represent 
the CSS sensing time. For every user u, ∀ u ∈ C, we presume that fn is the Nyquist frequency of the acquired 
signal from the licensed  user18. µ is considered as the manifold of 1fn , therefore the total samples are taken as ϕ 1

fn . 
Based on the observed scenario, as decided on the status every sensed node has Au[m] where m = 1, 2, 3, . . . ,ϕfn.

In this, every observed scenario comprises two hypotheses. H1 , hypotheses signifies that licensed users are in 
the spectrum detecting mode and H0 hypotheses signify licensed users are in the sleep mode.

Figure 1.  Multiple blocks connected together to form a blockchain network.
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The signal of licensed users at the uth sensor is denoted as nu[m] and is considered to be the process done ran-
domly with the 0th mean and variance σ 2

nu . Therefore, the noise pu[m] is a gaussian, independent and similar 
dispersed random process with the 0th mean and the variance σ 2

u . It is presumed that the independent processes 

(1)H1 → Au[m] =nu[m] + pu[m]

(2)H0 → Au[m] =pu[m]

Figure 2.  Blockchain-enabled cognitive wireless network.

Figure 3.  Cooperative spectrum sensing for smart cities.
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are nu[m] and pu[m] . Using hypothesis H1 , we represent u as the licensed user’s acquired SNR determined at the 
uth sensor. The possibility of identifying Id and possibility of triggering Tr are the possibilities of recognizing a 
licensed user under H1 and H0 , respectively, in node sensing. A cognitive sensor can thus detect whether a node 
is active or sleep based on these  possibilities19. An increased Id safeguards a licensed user broadcast from inter-
ruption with an unlicensed user broadcast, whereas a reduced Tr allows unlicensed users to access sleep nodes. 
As a result, a network with an increased Id and a reduced Tr is desired. The following is the decision rule used 
by the energy detection for the sensor u:

If H0 , then Ru = 0;

If H1 , then Ru = 1;

where ∈ signifies all the cognitive sensors for detection of threshold and Ru signifies the decision made by the 
node u. As a result, each user transmits a single bit to notify the FC of whether the licensed user signal is 1 or 
0. The test constant Du is a random variable with a chi-square distribution with 2ϕfn degrees of freedom during 
H0 , and a non-central chi-square probability with 2ϕfn degrees of freedom and a non-centrality parameter 2yu 
under H1.

We are assuming the OR rule to be applied for the final decision. In other words, if either of the sensors detects 
an active licensed user, the final decision proclaims the channel to be congested. We suppose that every CR in the 
identical channel makes its own decisions. The final decision for Id and Tr are shown in Eqs. (5) and (6) as below:

It is demonstrated that spectrum sensing does not necessitate the participation of all the  nodes2. For spectrum 
sensing, our method selects nodes with greater detection probability and shorter distances from the FC. As a 
result, we can change (5) and (6) with the Eqs. (7) and (8) below. In this βu ∈ 0, 1 which indicates the assignment 
index, 1 and 0 are used for sensing and not sensing the spectrum by the CSS respectively:

Proposed Method for Evaluation and Interpretation of nodes
It is crucial to use the node trust value as an essential measure to cooperate in CSS to enhance the safety of CWN. 
As a result, integrating the node trust value with the basic system design can improve sensing accuracy while 
reducing energy utilization. To avoid data ambiguity, the blockchain management center can be more  efficient20. 
The proposed flowchart enhances the accuracy of sensing and performance of the CWN so, this method begins 
by estimating the system’s consistency. This estimate is based on accessible statistical information. When an 
accused node is identified, it generates an instantaneous decision to isolate the node’s sensing data. The method 
achieves the system’s resiliency but boosts energy utilization, and the effects of global variations on the node are 
not taken into account. The licensed user’s living conditions have an impact on node sensing. For example, when 
the licensed user’s location changes, nodes with strong sensing may turn mischievous in the next instant, whereas 
nodes with low performance become a trusted nodes. As a result, to detect modifications in node status, a real-
time evaluation system for nodes must be established. When a node’s efficiency worsens, it can cease detecting 
work in real-time, and when it improves, it can be moved to work in real-time.

This article establishes an interpretation of nodes and an evaluation of the nodes method to determine and 
identify nodes more effectively. Before executing spectrum sensing procedures, the CWN determines the consist-
ency of each node, which is based on scientific data. The original aim will continue working whenever the global 
environment is stable, but when the global environment changes, the node’s consistency must be re-evaluated. 
To prevent issues, the node’s trustworthiness level is computed using Eq. (9), and the FC creates a nodes list and 
transmits node data to the blockchain’s management center. The management center effectively delivers node 
data and is in charge of scheduling nodes to engage in cooperative sensing based on the fusion center’s needs.

yu represents the starting trust value for the uth node, |Lu,a| signifies the CSS in the ath cycle of sensing of the 
uth node, lu,a denotes the worth value acquired in the ath cycle of sensing of the uth node. When the lu,a = 1 ; 
signifies the uth node in the ath cycle of sensing is reliable with the FC, and lu,a = 0 ; signifies the uth node in 
the ath cycle of sensing is not reliable with the FC. The evaluation and interpretation of nodes achieved by Eq.  

(3)∈ Du =
1

ϕfn

ϕfn∑

m=1

A2
um < H0

(4)∈ Du =
1

ϕfn

ϕfn∑

m=1

A2
um > H1

(5)Tr(ϕ) = 1−�C
u=1(1− Tru(ϕ))

(6)Id(ϕ) = 1−�C
u=1(1− Tdu(ϕ))

(7)Tr(ϕ) = 1−�C
u=1(1− βuTru(ϕ))

(8)Id(ϕ) = 1−�C
u=1(1− βuTdu(ϕ))

(9)yu =

∑m
a=1 |Lu,a| ∗ lu,a∑m

a=1 |Lu,a|
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(9) are used to store the value in the blockchain management center. The steps to evaluate and interpretation of 
nodes is explained as:

• Firstly, check whether the global environment has been modified, if yes, then re-evaluate the trust value of 
the nodes, otherwise, sensing nodes need not be modified.

• Then, FC will establish the list of nodes’ trust values.
• Later, the blockchain management center is accountable for managing and scheduling nodes.
• Further, adjust the number of sensing nodes and then call the nodes whose trust value is greater than the 

threshold value to engage in CSS.

Efficiency return value er, energy utilization return value eu, overall return value or, co-efficient of efficiency 
correction ρ , coefficient of energy utilization correction ec, and overall correction coefficient oc are the three 
return values and three correction coefficients set. These are computed in the given Eq. (10) for the Efficiency 
return value er:

In the above Eq. (10), the value of βa is either 1 or 0 which indicates that if its 1 means, the licensed user is in 
the sleep mode and 0 indicates the licensed user is in the active mode, u represents the same as given above, 
WC signifies the worth coefficient and PC signifies the unlawful coefficient. In this equation, αa and γa are the 
weighted coefficients which are represented in Eq.  (11).

In H0 → αa = 1, βa = 0, H1 → αa = 0, βa = 0

The representation for computation of energy utilization eu is shown in Eq. (12)

where EW represents the worth energy utilization which says that the node used for energy utilization is lower 
than the threshold value; EP represents the punishable energy utilization which says that the node used for energy 
utilization is higher than the threshold value. Za is the energy return value for the weighted coefficient and its 
value is denoted in Eq. (13) as: Za = 1 , τ0 , 

∑Iv
a,u = 0

where τ0 represents the threshold of energy utilization in a sensing duration. The overall return value for energy 
utilization is computed in Eq. (14) as:

This equation describes that 30% of the weight is assigned for the energy utilization return value and the rest 70% 
of the weight is assigned for the efficiency return value. Thereby, authors have focused on the sensing efficiency 
while taking into consideration the minimizing of energy utilization. The equation for calculating coefficient of 
coefficient correction ρ is:

The total number of repetitions the uth node communicates incorrect information to the FC is represented by 
the correction coefficient ρu ; µa ,u shows that in the ath sensing cycle, the outcome provided by the uth node to 
the fusion center; βa reflects the outcome of the ath sensing cycle’s decision. The energy utilization correction 
coefficient is denoted by ec is computed in the Eq. (16).

The total number of repetitions the uth node increases the value of threshold is represented by the energy uti-
lization; the Eq. (17) shows the significance of Ja,u . In case Ja,u = 1 means va,u − τ0 >= 0 and Ja,u = 0 means 
va,u − τ0 < 0 . τ0 means the threshold value has been raised for energy utilization and its value is computed where 
I is the total number of nodes present in the CWN; and va,u tells that the energy utilized for the uth node in the 
ath sensing cycle is shown in Eq. (17).

The predefined value for the overall correction coefficient oc is shown in Eq. (18).

(10)er =
1

m

m∑

a=1

[(1− βa)(αa ∗WC + (1− αF)PC)] + βa(γa ∗WC + (1− γa) ∗ PC)

(11)InH0 → γa = 0,βa = 1 and InH1 → γa = 1,βa = 1

(12)eu =
1

m

m∑

a=1

[EWZa + EP(1− Za)]

(13)Za = 0, τ0 −

Iv∑

a,u

< 0

(14)or = 0.3er + 0.7eu

(15)ρu =
∑

a

(µa,u − βa)

(16)ecu =
∑

a

Sa,u ∗ Ja,u

(17)τ0 =

∑I
u=1 va,u

I
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ocu is the overall correction coefficient for the uth node which has been acquired by the total weighted count of 
the efficient and energy utilization correction coefficient. The efficiency has been evaluated by 30% and 70% for 
the efficient and energy utilization correction coefficient respectively. The trust value of the nodes are computed 
as shown in Eq. (19).

In the above Eq. (19), yru shows the nodes trust value in the ath sensing cycle for the uth node; yr+1
u  shows the 

present nodes trust value for the uth node; ocru is the overall return value of the sensing cycle; the ϕ denotes the 
value either 1 or 0. More the value of ϕ gives better efficiency for energy utilization. The flowchart for the evalu-
ation and interpretation of nodes is shown in Fig. 4.

The complexity of the proposed flowchart is O(I!) where O is denoted Big O Notation, I is the total number 
of nodes in the trust value. In the design flowchart, the main difficulty of blockchain-enabled CWN among the 
IoT devices shows that this article consists of the blockchain system, CWN’s and IoT devices. The FC is where 
users interact with the blockchain system. The IoT device provides node data to the FC, which searches the 
blockchain system for node data. The node then transmits verified by the private key to the FC, which validates 
if the sensing node has a matching private key pair. If that’s the case, send the node’s request to the blockchain 
system, and the blockchain system’s confirmation to the sensing node. The data verified by the sensing node can 
verify the identity of those taking part in CSS and guarantee that their message has not been tampered with. The 
steps to follow for the designing of CWN are:

• Firstly, check the sensing nodes in the CWN. It transmits the information of nodes and then requests for the 
identification of encryption to the FC.

• Secondly, examine the verification request to the blockchain management center.
• Thirdly, the blockchain management center returns the verification information to the FC and then returns 

the encrypted data to the sensing nodes of CWN.

Discussion
Let us assume that the CWN changes from quantity ten to sixty whose main objective is to select the best location 
of the sensor nodes and choose the sensing sensors regarding the limitations on the possibility of identifying 
Id and possibility of triggering Tr. Simulation outcome displays the α = 1.5 and γ = 2.5 and acquired α = 0.8 
and γ = 1.2 in which all the nodes simulations outcome comes out to be over 2000 iterations. This experiment 
has been implemented in the solidity tool for the blockchain and the tests were This study involves a workspace 
is shown in Table 1 with two Intel Xeon Gold6 128 3.7GHz CPUs, 512 GB of memory, and a Panasonic S16GB 
SDHC Memory Card to run VMware ESXi 6.7.0 bare metal virtualized system. There are 8 auxiliary nodes and 
30 sensor nodes in the modeled CWN. In this simulation environment, the total number of tampered users 
(TU) are described in two different cases: the first case, in case there are 5 TU’s then the SNR is − 16d B for 1 
TU working under SNR; the second case, in case there are 10 TU’s then the SNR is taken as − 18d B for 3 TU’s 
working under SNR.

(18)ocu = 0.3ρu + 0.7ecu

(19)yr+1
u = yru + (ωoc − (1− ϕ)ocru)y

r
u

Figure 4.  Flowchart for the evaluation and interpretation of nodes.
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Authors have utilized the 5.2 MHz IEEE 802.15.4/ZigBee for the CSS communication which interacts with 
each other to sense the spectrum. For the performance evaluation, authors have assumed that the sensors that 
are located at the sensing field are 200m in length where the sensing nodes are uniformly dispersed and in the 
middle of CSS, FC is situated. In this article, while taking the evaluation and interpretation of nodes flowchart 
into account, the total number of TU’s are taken as 10. Therefore, to enhance the sensing efficiency of the nodes 
the comparison for various sensing has been discussed in this article.

The licensed users are based on the location which is placed on the edge of the circular area; the total number 
of nodes required is assumed as 30 (10 nodes having SNR = − 16 dB, − 18 dB and − 12 dB) respectively for all the 
nodes. The total TU’s are 3 when the SNR is − 18 dB. In the situation of four TU’s in CWN, the flowchart in this 
article’s identification Id is greater than the classical method under the same possibility of triggering Tr. That’s 
because the flowchart in this article takes into account the environment and other variables, and the CWN is 
more resilient and anti-attack competent. The node information may be monitored in real-time in any location, 
and blockchain technology encrypts the node information. The FC can request that high-performing nodes 
engage in CSS, ensuring that sensing performance is always improved.

In this article, various algorithms have been compared with the proposed work. In the Reduced energy Algo-
rithm (REA), Sensors are ordered in increasing order as per their distances from the FC in this approach, and 
nodes with the shortest distances are chosen to sense the channel such that Id > γ is fulfilled. There are fewer 
sensing nodes than I. If REA can identify nodes that meet the Id > γ criterion, then its solution is close to opti-
mum since it selects nodes with the shortest distances from the FC. In the Increased possibility of Identification 
Algorithm (IPIDA), Sensors are ordered in decreasing order as per their Idu in this flowchart. As a result, the 
nodes with the highest Idu are chosen, and the selection nodes are less than I, satisfying the Idu > γ condition. 
If there is a response for the algorithm, IIPDA discovers it. The randomized sensor choosing algorithm (RSCA) 
selects sensors for CSS at random, with the number of choosing nodes being less than I. This algorithm is the 
simplest to use to identify a solution for the problems.

The REA algorithm when the number of nodes rises, the energy consumed in the network is minimized 
because the nodes comes closer to one another and their distance will be decreased while transferring the data 
as shown in Fig. 6. But on the other side IIDPA uses the less number of nodes. Our proposed algorithm and 
REA are closer to the IIDPA which displays that our proposed algorithm consumes less energy while maximis-
ing the number of nodes.

Figure 5 shows the success rate of finding a solution for several methods that meet Id > γ . This statistic for 
each method demonstrates the algorithms’ capacity to locate the answer when the problem conditions are met. 
It is shown that the REA method is compatible with the IIPDA algorithm, implying that if the problem has a 

Table 1.  Simulation environment.

QoS metrics Range

Intel Xeon Gold6 128.37GHz

Memory 512GB

Panasonic S16GB SDHC

VMware ESXi 6.7.0

Auxilary nodes 8

Sensor nodes 30

Figure 5.  Percentage for finding the solution with α = 1.5 and γ = 2.5 with varying number of nodes.
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solution, our proposed scheme can locate it. On the other hand, probably, REA and RSCA will not discover a 
solution to the issue while it has one.

The average number of sensing nodes for various methods is displayed in Fig. 6. IIPDA employs the smallest 
number of nodes possible. IIPDA and our algorithm and REA are extremely similar. This shows that our approach 
uses the least amount of energy while keeping Id > γ constant. The RSCA algorithm uses the most sensing nodes.

Figure 7 shows that when the number of sensing cycles surpasses 60, the energy consumption of the method in 
this paper is much lower than the other three main techniques. The more sensing cycles there are, and the longer 
the sensing duration is, the more energy is saved. CWN will be greatly aided in extending the operating life. 
That’s because the methodology in this work can always choose the node with the best performance to participate 
in CSS in real-time, saving more energy than the conventional method when sensing efficiency is preferable.

Conclusion
This paper examines the concept of CWN for smart cities in detail. CSS sensing collaboration is critical for 
limiting the effects of shadowing and fading, as well as accurate sensing. Nevertheless, as the number of users 
grows, we spend lots of time observing, analyzing, and transmitting data. Furthermore, expanding the amount 
of spectrum sensing users does not enhance the system’s detection accuracy exponentially. As a result, it is not 
required to use all users at all times for spectrum sensing. So, when nodes sense data in practical implementation 
situations of CWN, there are generally major mistakes that cause the sensing values to depart from the normal 
range, or some nodes intentionally relay the erroneous data to the FC. As a result, this study offers the Evaluation 
and interpretation of nodes flowchart to address the security challenge of TU’s attack in CWN for smart cities. 
In this article, the authors have made a comparison with various existing algorithms based on the percentage of 
finding the solution of sensing nodes, the average number of sensing nodes and energy utilization. It has been 
found that the proposed methodology achieves 10% sensing efficiency in finding the solution for identification 
and triggering possibilities with the value of α = 1.5 and γ = 2.5 with the varying number of nodes.

Figure 6.  Average number of sensing nodes with α = 1.5 and γ = 2.5 with varying number of nodes.

Figure 7.  Comparison of energy utilization with existing algorithms.
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