Las Metodologías Activas en el Proceso de Enseñanza Aprendizaje de la Carrera de Desarrollo Infantil Integral
Tesis
Materias > Educación
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado
Español
En este trabajo de fin de máster se presentan los resultados de un proyecto de investigación en el que se ha pretendido analizar la efectividad de una guía de estrategias didácticas basadas, en las metodologías activas dirigidas a los docentes para mejorar el proceso de enseñanza aprendizaje en el del 2do semestre de la carrera de Desarrollo Infantil Integral del Instituto Superior Cordillera. Se parte de la relevancia actual de la integración de los métodos activos de la enseñanza como tendencia educativa y la necesidad de explorar el tema en el contexto del estudio. Se tuvieron en cuenta los aportes teóricos de estudios sobre integración de las estrategias activas de la enseñanzas, como aprendizajes significativos, e integración de las tics, con metodología de la investigación acción y descriptiva en la que se realizó un estudio de campo, por un periodo de tiempo de 6 meses, en donde se analizó los tipos de estrategias aplicada en el instituto y las nuevas estrategias activas en la planificación clase para los jóvenes universitarios. Las metodologías activas de enseñanza aprendizaje para los jóvenes de la carrera de Desarrollo Infantil Integral, es una propuesta dirigida a los docentes del Instituto Superior Cordillera para aplicar en sus enseñanzas y fortalecer el desarrollo del pensamiento crítico y reflexivo en los jóvenes de esa universidad, mediante la aplicación de estos métodos activos que son tendencia en el siglo XXI, como la gamificación, los trabajos colaborativos y grupales, la clase invertida y el uso también las plataformas TIC como recurso innovador de la enseñanza activa del aprendizaje. La recogida de datos se realizó a través de distintas técnicas cualitativas: encuestas al equipo docentes, a los coordinadores, a través de observaciones de clase, y mediante la realización de encuesta con los estudiantes. Los resultados más relevantes indican que es necesario consolidar las acciones del proyecto e implementar acciones de formación docente en este campo.
metadata
Diaz Benavides, Tania Margarita
mail
taniadbenavides@gmail.com
(2022)
Las Metodologías Activas en el Proceso de Enseñanza Aprendizaje de la Carrera de Desarrollo Infantil Integral.
Masters thesis, SIN ESPECIFICAR.
Resumen
En este trabajo de fin de máster se presentan los resultados de un proyecto de investigación en el que se ha pretendido analizar la efectividad de una guía de estrategias didácticas basadas, en las metodologías activas dirigidas a los docentes para mejorar el proceso de enseñanza aprendizaje en el del 2do semestre de la carrera de Desarrollo Infantil Integral del Instituto Superior Cordillera. Se parte de la relevancia actual de la integración de los métodos activos de la enseñanza como tendencia educativa y la necesidad de explorar el tema en el contexto del estudio. Se tuvieron en cuenta los aportes teóricos de estudios sobre integración de las estrategias activas de la enseñanzas, como aprendizajes significativos, e integración de las tics, con metodología de la investigación acción y descriptiva en la que se realizó un estudio de campo, por un periodo de tiempo de 6 meses, en donde se analizó los tipos de estrategias aplicada en el instituto y las nuevas estrategias activas en la planificación clase para los jóvenes universitarios. Las metodologías activas de enseñanza aprendizaje para los jóvenes de la carrera de Desarrollo Infantil Integral, es una propuesta dirigida a los docentes del Instituto Superior Cordillera para aplicar en sus enseñanzas y fortalecer el desarrollo del pensamiento crítico y reflexivo en los jóvenes de esa universidad, mediante la aplicación de estos métodos activos que son tendencia en el siglo XXI, como la gamificación, los trabajos colaborativos y grupales, la clase invertida y el uso también las plataformas TIC como recurso innovador de la enseñanza activa del aprendizaje. La recogida de datos se realizó a través de distintas técnicas cualitativas: encuestas al equipo docentes, a los coordinadores, a través de observaciones de clase, y mediante la realización de encuesta con los estudiantes. Los resultados más relevantes indican que es necesario consolidar las acciones del proyecto e implementar acciones de formación docente en este campo.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | Métodos activos, proceso de enseñanza, TIC. |
Clasificación temática: | Materias > Educación |
Divisiones: | Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster |
Depositado: | 06 May 2024 23:30 |
Ultima Modificación: | 06 May 2024 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/3173 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
en
close
Background The aging process leads to negative changes in various bodily systems, including the neuromuscular system. Strength training, is considered the best strategy to counteract these neuromuscular changes, preventing sarcopenia and frailty in older adults. Objective To compare the effects of strength training with elastic resistance and free weights on the muscle strength of knee extensors and flexors and functional performance in the older adults. Methods This was a randomised clinical study. Thirty-one participants of both sexes were allocated randomly into two groups: Training Group Free Weight (TGFW, n = 15) and Training Group with Elastic Resistance (TGER, n = 16). Two individuals were excluded and so, twenty-nine individuals were evaluated before and after eight weeks training protocol, which was performed three times a week. The determination of the training load was obtained using a protocol of 10 repetitions maximum. Results No significant differences were found in either the intra- or the inter-group comparisons, on functional performance and peak muscle strength. In the intra-groups (pre- and post-strength training), it was observed that both groups significantly increased the training load (10 RM) for the extensors (TGFW p = 0.0002; TGER p = 0.0001) and the knee flexors (TGFW p = 0.006; TGER p = 0.0001). Conclusion Both training protocols similarly were effective in increasing the training load observed by the 10 RM test of the extension and flexion movements of the knee.
Rafaela Zanin Ferreira mail , Antonio Felipe Souza Gomes mail , Marco Antonio Ferreira Baldim mail , Ricardo Silva Alves mail , Leonardo César Carvalho mail , Adriano Prado Simão mail ,
Ferreira
<a class="ep_document_link" href="/16734/1/nutrients-17-00577.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Mediterranean Diet and Quality of Life in Adults: A Systematic Review
Background/Objectives: With the increasing life expectancy and, as a result, the aging of the global population, there has been a rise in the prevalence of chronic conditions, which can significantly impact individuals’ health-related quality of life, a multidimensional concept that comprises an individual’s physical, mental, and social wellbeing. While a balanced, nutrient-dense diet, such as Mediterranean diet, is widely recognized for its role in chronic disease prevention, particularly in reducing the risk of cardiovascular diseases and certain cancers, its potential benefits extend beyond these well-known effects, showing promise in improving physical and mental wellbeing, and promoting health-related quality of life. Methods: A systematic search of the scientific literature in electronic databases (Pubmed/Medline) was performed to identify potentially eligible studies reporting on the relation between adherence to the Mediterranean diet and health-related quality of life, published up to December 2024. Results: A total of 28 studies were included in this systematic review, comprising 13 studies conducted among the general population and 15 studies involving various types of patients. Overall, most studies showed a significant association between adherence to the Mediterranean diet and HRQoL, with the most significant results retrieved for physical domains of quality of life, suggesting that diet seems to play a relevant role in both the general population and people affected by chronic conditions with an inflammatory basis. Conclusions: Adherence to the Mediterranean diet provides significant benefits in preventing and managing various chronic diseases commonly associated with aging populations. Furthermore, it enhances the overall health and quality of life of aging individuals, ultimately supporting more effective and less invasive treatment approaches for chronic diseases.
Justyna Godos mail , Monica Guglielmetti mail , Cinzia Ferraris mail , Evelyn Frias-Toral mail , Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Vivian Lipari mail vivian.lipari@uneatlantico.es, Andrea Di Mauro mail , Fabrizio Furnari mail , Sabrina Castellano mail , Fabio Galvano mail , Licia Iacoviello mail , Marialaura Bonaccio mail , Giuseppe Grosso mail ,
Godos
<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer