Evaluación de la efectividad de ocho productos mejoradores de adherencia (aditivos) en mezclas asfálticas sueltas y compactas de granulometría densa en caliente con diseño de alto desempeño, Protocolo AMAAC a nivel II.
Tesis
Materias > Ingeniería
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado
Español
El presente proyecto de investigación tuvo como objetivo evaluar la efectividad de ocho productos mejoradores de adherencia (aditivos) en mezclas asfálticas de granulometría densa en caliente diseñadas bajo el Protocolo AMAAC a nivel II, con el fin de analizar y evaluar la efectividad diversos productos que se encuentran en el mercado y así diseñar carpetas asfálticas para pavimentos flexibles de alto desempeño eliminando los problemas de stripping o pérdida del recubrimiento causado por la presencia de agua en el interior de la mezcla y raveling o pérdida de agregados en la superficie de la mezcla causado por el paso de las llantas de los vehículos.Una vez seleccionados los ocho aditivos mejoradores de adherencia se procedió a aditivar un asfalto convencional AC-20 con cada producto y con dos dosificaciones 0.3% y 0.5% respecto al peso del asfalto, y se almacenaron en latas de aluminio de 10 litros. Los materiales evaluados son de origen calizo y de río, ya que por sus características físicas y químicas poseen una baja afinidad con el asfalto, es decir que las partículas de los pétreos tienen una baja adherencia con las partículas de los ligantes asfálticos.Para cumplir con los objetivos del proyecto se realizó la investigación en un laboratorio de mezclas asfálticas, evaluando en un primer momento el porcentaje de desprendimiento en mezclas sueltas con cada aditivo y en sus diversas dosificaciones, seleccionando el aditivo con mejores resultados. Posteriormente, con el asfalto aditivado seleccionado se realizó un diseño de mezcla de granulometría densa en caliente bajo Protocolo AMAAC a nivel II: caracterización de materiales, diseño volumétrico y se sometió a pruebas de alto desempeño TSR y Hamburgo.Los resultados obtenidos son presentados en la sección correspondiente con imágenes, tablas y gráficas comparando la efectividad del producto mejorador de adherencia. La confiabilidad del proyecto se obtuvo mediante pruebas de laboratorio normadas por la Asociación Mexicana del Asfalto A.C. (AMAAC), Sociedad Americana para Pruebas y Materiales (ASTM), La Asociación Americana de Oficiales de Carreteras Estatales y Transporte (AASHTO) y los equipos certificados y calibrados del laboratorio de mezclas de Ergon Asfaltos México.Como resultado de la investigación, se evidencia la existencia de materiales que se encuentran en diversas zonas de México con baja afinidad al asfalto, por lo cual es necesario buscar alternativas que sean factibles técnicamente, pero sobre todo económicamente, por lo cual una de las alternativas más socorridas por empresas contratistas en proyectos carreteros es la aditivación de asfaltos, mejorando las propiedades de los ligantes y por ende la calidad y periodo de vida de las carreteras.
metadata
Jimarez Rodríguez, Julio César
mail
Ji_ma_rez@hotmail.com
(2022)
Evaluación de la efectividad de ocho productos mejoradores de adherencia (aditivos) en mezclas asfálticas sueltas y compactas de granulometría densa en caliente con diseño de alto desempeño, Protocolo AMAAC a nivel II.
Masters thesis, SIN ESPECIFICAR.
Resumen
El presente proyecto de investigación tuvo como objetivo evaluar la efectividad de ocho productos mejoradores de adherencia (aditivos) en mezclas asfálticas de granulometría densa en caliente diseñadas bajo el Protocolo AMAAC a nivel II, con el fin de analizar y evaluar la efectividad diversos productos que se encuentran en el mercado y así diseñar carpetas asfálticas para pavimentos flexibles de alto desempeño eliminando los problemas de stripping o pérdida del recubrimiento causado por la presencia de agua en el interior de la mezcla y raveling o pérdida de agregados en la superficie de la mezcla causado por el paso de las llantas de los vehículos.Una vez seleccionados los ocho aditivos mejoradores de adherencia se procedió a aditivar un asfalto convencional AC-20 con cada producto y con dos dosificaciones 0.3% y 0.5% respecto al peso del asfalto, y se almacenaron en latas de aluminio de 10 litros. Los materiales evaluados son de origen calizo y de río, ya que por sus características físicas y químicas poseen una baja afinidad con el asfalto, es decir que las partículas de los pétreos tienen una baja adherencia con las partículas de los ligantes asfálticos.Para cumplir con los objetivos del proyecto se realizó la investigación en un laboratorio de mezclas asfálticas, evaluando en un primer momento el porcentaje de desprendimiento en mezclas sueltas con cada aditivo y en sus diversas dosificaciones, seleccionando el aditivo con mejores resultados. Posteriormente, con el asfalto aditivado seleccionado se realizó un diseño de mezcla de granulometría densa en caliente bajo Protocolo AMAAC a nivel II: caracterización de materiales, diseño volumétrico y se sometió a pruebas de alto desempeño TSR y Hamburgo.Los resultados obtenidos son presentados en la sección correspondiente con imágenes, tablas y gráficas comparando la efectividad del producto mejorador de adherencia. La confiabilidad del proyecto se obtuvo mediante pruebas de laboratorio normadas por la Asociación Mexicana del Asfalto A.C. (AMAAC), Sociedad Americana para Pruebas y Materiales (ASTM), La Asociación Americana de Oficiales de Carreteras Estatales y Transporte (AASHTO) y los equipos certificados y calibrados del laboratorio de mezclas de Ergon Asfaltos México.Como resultado de la investigación, se evidencia la existencia de materiales que se encuentran en diversas zonas de México con baja afinidad al asfalto, por lo cual es necesario buscar alternativas que sean factibles técnicamente, pero sobre todo económicamente, por lo cual una de las alternativas más socorridas por empresas contratistas en proyectos carreteros es la aditivación de asfaltos, mejorando las propiedades de los ligantes y por ende la calidad y periodo de vida de las carreteras.
Tipo de Documento: | Tesis (Masters) |
---|---|
Palabras Clave: | Productos mejoradores de adherencia, Protocolo AMAAC, Diseño de mezclas asfálticas, Agregados pétreos y ligantes asfálticos, Mezclas sueltas y compactas. |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster |
Depositado: | 03 May 2024 23:30 |
Ultima Modificación: | 03 May 2024 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/3099 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
<a class="ep_document_link" href="/17569/1/Food%20Frontiers%20-%202025%20-%20Romero%E2%80%90Marquez%20-%20Olive%20Leaf%20Extracts%20With%20High%20%20Medium%20%20or%20Low%20Bioactive%20Compounds%20Content.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Alzheimer's disease (AD) involves β-amyloid plaques and tau hyperphosphorylation, driven by oxidative stress and neuroinflammation. Cyclooxygenase-2 (COX-2) and acetylcholinesterase (AChE) activities exacerbate AD pathology. Olive leaf (OL) extracts, rich in bioactive compounds, offer potential therapeutic benefits. This study aimed to assess the anti-inflammatory, anti-cholinergic, and antioxidant effects of three OL extracts (low, mid, and high bioactive content) in vitro and their protective effects against AD-related proteinopathies in Caenorhabditis elegans models. OL extracts were characterized for phenolic composition, AChE and COX-2 inhibition, as well as antioxidant capacity. Their effects on intracellular and mitochondrial reactive oxygen species (ROS) were tested in C. elegans models expressing human Aβ and tau proteins. Gene expression analyses examined transcription factors (DAF-16, skinhead [SKN]-1) and their targets (superoxide dismutase [SOD]-2, SOD-3, GST-4, and heat shock protein [HSP]-16.2). High-OL extract demonstrated superior AChE and COX-2 inhibition and antioxidant capacity. Low- and high-OL extracts reduced Aβ aggregation, ROS levels, and proteotoxicity via SKN-1/NRF-2 and DAF-16/FOXO pathways, whereas mid-OL showed moderate effects through proteostasis modulation. In tau models, low- and high-OL extracts mitigated mitochondrial ROS levels via SOD-2 but had limited effects on intracellular ROS levels. High-OL extract also increased GST-4 levels, whereas low and mid extracts enhanced GST-4 levels. OL extracts protect against AD-related proteinopathies by modulating oxidative stress, inflammation, and proteostasis. High-OL extract showed the most promise for nutraceutical development due to its robust phenolic profile and activation of key antioxidant pathways. Further research is needed to confirm long-term efficacy.
Jose M. Romero‐Marquez mail , María D. Navarro‐Hortal mail , Alfonso Varela‐López mail , Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Juan G. Puentes mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Cristina Sánchez‐González mail , Jianbo Xiao mail , Roberto García‐Ruiz mail , Sebastián Sánchez mail , Tamara Y. Forbes‐Hernández mail , José L. Quiles mail jose.quiles@uneatlantico.es,
Romero‐Marquez
<a class="ep_document_link" href="/17570/1/eFood%20-%202025%20-%20Navarro%E2%80%90Hortal%20-%20Effects%20of%20a%20Garlic%20Hydrophilic%20Extract%20Rich%20in%20Sulfur%20Compounds%20on%20Redox%20Biology%20and.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Garlic is a horticultural product highly valued for its culinary and medicinal attributes. The aim of this study was to evaluate the composition of a garlic hydrophilic extract as well as the influence on redox biology, Alzheimer's Disease (AD) markers and aging, using Caenorhabditis elegans as experimental model. The extract was rich in sulfur compounds, highlighting the presence of other compounds like phenolics, and the antioxidant property was corroborated. Regarding AD markers, the acetylcholinesterase inhibitory capacity was demonstrated in vitro. Although the extract did not modify the amyloid β-induced paralysis degree, it was able to improve, in a dose-dependent manner, some locomotive parameters affected by the hyperphosphorylated tau protein in C. elegans. It could be related to the effect found on GFP-transgenic stains, mainly regarding to the increase in the gene expression of HSP-16.2. Moreover, an initial investigation into the aging process revealed that the extract successfully inhibited the accumulation of intracellular and mitochondrial reactive oxygen species in aged worms. These results provide valuable insights into the multifaceted impact of garlic extract, particularly in the context of aging and neurodegenerative processes. This study lays a foundation for further research avenues exploring the intricate molecular mechanisms underlying garlic effects and its translation into potential therapeutic interventions for age-related neurodegenerative conditions.
María D. Navarro‐Hortal mail , Jose M. Romero‐Marquez mail , Johura Ansary mail , Cristina Montalbán‐Hernández mail , Alfonso Varela‐López mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Jianbo Xiao mail , Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Cristina Sánchez‐González mail , Tamara Y. Forbes‐Hernández mail , José L. Quiles mail jose.quiles@uneatlantico.es,
Navarro‐Hortal
<a class="ep_document_link" href="/17573/1/s41598-025-96332-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel hybrid transfer neural network for wheat crop growth stages recognition using field images
Wheat is one of the world’s most widely cultivated cereal crops and is a primary food source for a significant portion of the population. Wheat goes through several distinct developmental phases, and accurately identifying these stages is essential for precision farming. Determining wheat growth stages accurately is crucial for increasing the efficiency of agricultural yield in wheat farming. Preliminary research identified obstacles in distinguishing between these stages, negatively impacting crop yields. To address this, this study introduces an innovative approach, MobDenNet, based on data collection and real-time wheat crop stage recognition. The data collection utilized a diverse image dataset covering seven growth phases ‘Crown Root’, ‘Tillering’, ‘Mid Vegetative’, ‘Booting’, ‘Heading’, ‘Anthesis’, and ‘Milking’, comprising 4496 images. The collected image dataset underwent rigorous preprocessing and advanced data augmentation to refine and minimize biases. This study employed deep and transfer learning models, including MobileNetV2, DenseNet-121, NASNet-Large, InceptionV3, and a convolutional neural network (CNN) for performance comparison. Experimental evaluations demonstrated that the transfer model MobileNetV2 achieved 95% accuracy, DenseNet-121 achieved 94% accuracy, NASNet-Large achieved 76% accuracy, InceptionV3 achieved 74% accuracy, and the CNN achieved 68% accuracy. The proposed novel hybrid approach, MobDenNet, that synergistically merges the architectures of MobileNetV2 and DenseNet-121 neural networks, yields highly accurate results with precision, recall, and an F1 score of 99%. We validated the robustness of the proposed approach using the k-fold cross-validation. The proposed research ensures the detection of growth stages with great promise for boosting agricultural productivity and management practices, empowering farmers to optimize resource distribution and make informed decisions.
Aisha Naseer mail , Madiha Amjad mail , Ali Raza mail , Kashif Munir mail , Aseel Smerat mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Imran Ashraf mail ,
Naseer