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Abstract: According to the United Nations, the Sustainable Development Goal ‘6’ seeks to ensure
the availability and sustainable management of water for all. Digital technologies, such as big data,
Internet of Things (IoT), and machine learning (ML) have a significant role and capability to meet the
goal. Water quality analysis in any region is critical to identify and understand the standard of water
quality and the quality of water is analyzed based on water quality parameters (WQP). Currently,
water pollution and the scarcity of water are two major concerns in the region of Uttarakhand,
and the analysis of water before it is supplied for human consumption has gained attention. In
this study, a big data analytics framework is proposed to analyze the water quality parameters of
13 districts of Uttarakhand and find the correlation among the parameters with the assimilation of
IoT and ML. During the analysis, statistical and fractal methods are implemented to understand
the anomalies between the water quality parameters in 13 districts of Uttarakhand. The variation
in WQP is analyzed using a random forest (RF) model, and the dataset is segmented location wise
and the mean, mode, standard deviation, median, kurtosis, and skewness of time series datasets
are examined. The mean of the parameters is adjusted with the coefficient of variation based on the
standard values of each parameter. The turbidity in almost all the experimental sites has a normal
distribution, with the lowest mean value (0.352 mg/L) and highest (11.9 mg/L) in the Pauri Garhwal
and Almora districts, respectively. The pH of the water samples is observed to be in the standard
range in all the experimental sites, with average and median values being nearly identical, at 7.189
and 7.20, respectively. However, the pH mode is 0.25. The Cl− concentration varies with mean
values from the lowest (0.46 mg/L) to the highest (35.2 mg/L) over the experimental sites, i.e., the
Bageshwar and Rudraprayag districts, respectively. Based on the analysis, it was concluded that
the water samples were found to be safe to drink and in healthy condition in almost all the districts
of the state Uttarakhand, except for the Haridwar district, where some increase in contaminants
was observed.

Keywords: fractals; water quality indicator; predictability index; remote sensing and GIS; machine
learning (ML); Internet of Things (IoT)

1. Introduction

According to the Sustainable Development Goal ‘6’, there is a need to ensure the
availability and sustainable management of water and sanitation for all [1]. Concerning
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this, the Indian government is striving towards achieving the goal of the United Nations.
The Himalayan rivers are the major source of surface water in India and they are one of
the world’s most abundant sources of drinking water and become easily polluted due
to anthropogenic emissions [2,3] and manmade activity, such as urbanization, industrial
growth, wastewater discharge, and agricultural expansion [4]. Water as a natural resource
system requires a procedure with a large number of components that may perform compu-
tations to study the water quality indices (WQIs) in dynamic phenomena for lakes, rivers,
watersheds, etc. [5]. Inconsistency among the input parameters is usually observed due
to geographic, geological, and demographic challenges [6,7]. In comparison to surface
water, the subsurface is the largest store of drinkable water and it is less polluted, but in the
current scenario, the increased inorganic trashes, on the other hand, can contaminate both
surface and groundwater.

A recent study involving the hydrogeochemical analysis of the glacier meltwater was
conducted over the higher mountainous region of the Chaturangi glacier, Garhwal Himalaya [8]
and concluded that the water quality has degraded in the ablation period. It could be related to
the rate at which chemical reactions occur, causing rock breakdown and mineral dispersion into
the melting water. The water quality index (WQI) is employed to analyze the water quality of
the river Yamuna during 2000–2009 and it was observed that the critical parameters are affecting
the water quality [9]. The state of Uttarakhand is the part of the central and western Himalayas
and the rivers emerging from the peaks of the Himalayas provide freshwater [10] and the
low-lying regions in the state of Uttarakhand have been experiencing the cumulative impact,
including soil pollution and surface water contamination due to the rise in industrialization,
and large construction activities over the last several decades [11]. In developing countries,
the majority of the health issues are due to the contamination in the drinking water, which is
critically required to be taken into consideration for a sustainable ecosystem and indeed the
good quality of the drinking water [12].

The assessment of groundwater vulnerability maps demands the adoption of a variety
of approaches and procedures based on hydrogeological knowledge of the research area
and the use of predictive models. For estimating ground water quality, there are two
popular modelling strategies, (1) deterministic physically models and (2) statistical and ML
methods [13]. Several climate and watershed parameters are used in this study to determine
the long-term median stream water quality indicators using ML algorithms [14]. Nonlinear
interactions linked with ground water can now be handled by recent ML algorithms.
Furthermore, rather than relying on a previous assumption, these algorithms discover the
link between response variables and predictors, enhancing model prediction accuracy. It is
proved that RF-based models are appropriated for the analysis of water quality because
they are flexible in handling non-linear relationships, limit model overfitting, have less
user defined parameters and are capable of incorporating the quantitative and qualitative
variables [15].

With the motivation of these aspects, this study aims to implement a big data analytics
framework to analyze the water quality parameters of 13 districts of Uttarakhand. Along
with this, an architecture is proposed to analyze the big data that is obtained through the
IoT and field. This variation in data is analyzed with an RF model, in which the mean,
mode, standard deviation, median, kurtosis, and skewness of time series datasets are
examined. The contribution of the study is as follows:

• A big data analytics-based framework is proposed in this study for water quality
parameter analysis.

• The variation in WQP is analyzed using a random forest (RF) model, and the mean
of the parameters is adjusted with the coefficient of variation based on the standard
values of each parameter.

• The predictability analysis of 13 experimental sites is carried out with the fractal approach.
• The results were obtained from the statistical analysis over the different experimental

sites using two approaches i.e., skewness, kurtosis curves and correlation matrix tables
for each parameter over the studied experimental sites.
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This research paper is organized as follows. The WQI applications in the context of the
extended fractal analysis for water quality parameters (WQPs) are reviewed in Section 2.
Section 3 covers the materials and methods. Section 4 covers the results and discussion.
The last and final Section 5 concludes the paper.

2. Background

WQIs provide the environment of a water body in terms of pollution load segmentation
and identification of water quality. Dissolved oxygen (DO), biochemical oxygen demand
(BOD), chemical oxygen demand (COD), pH, NH3-NL, and SS are the parameters for
these indices and there is a high need for spatial and temporal monitoring [16]. The
comprehensive analysis with the simulation of the water quality datasets is highly required
to a large extent, as it is challenging to assess spatial variation among the WQIs. The remote
sensing technique and ground-level survey of the parameters will be useful in a spatial and
temporal range study of the quality assessment for policymakers [17]. Each water quality
parameter may be used to analyze the quality of drinking water and its quality management
initiatives for stakeholders. The influence of water parameters and quality index assessment
was investigated for 28-years of data in the upper uMngeni watershed for the 11 samples
(pH, electrical conductivity, temperature, turbidity, total suspended particles, NH4-N,
NO3-N, PO4-P, and total phosphorus [18]. There is an urgent need for a comprehensive
analysis of WQIs, especially in the Himalayan region including statistical, fractal, and
geospatial techniques [19]. The identification of interlinkages between environment and
water pollutants can help to enhance the forecasting of chemical exposure and helps
in the evaluation of pollutant export over complex ecosystems [20]. The links between
some particular water pollutants and the selected hydrological character variables were
elucidated using a modified least-square analysis, due to the substantial co-dependence of
the hydrological processes [21].

The WQIs were used to categorize groundwater from the permanent wells in the
Kanchipuram district of Tamil Nadu, where 13 groundwater quality parameters were
used to conclude water quality [22,23]. There are two traditional approaches to analyzing
the WQI data and they are statistical and fractal approaches. The statistical and fractal
approaches may provide the variation in the parameters spatially, as the Himalayan region
has undulating geography, as well as huge network sources of surface water. However,
information from only ground observations of a single indicator fails to resolve the compli-
cated geographical terrain, which has an influence mostly on the hydrological cycle either
directly or indirectly [24]. Fractal analysis was performed on the quality of rural domestic
wastewater under the condition of dissolved oxygen stability [25]. Fractal analysis i.e., the
Hurst exponent (H), fractal dimension (FD), and predictability (PI) of the water parameters
will lead to better knowledge, as well as the ability to explain the better-approximated val-
ues [5] and statistically, it can lead to a reduction in the uncertainty in the analysis of large
datasets. The water quality has been evaluated at multiple places for each water parameter
using statistical methods. To determine the trend and predictability of water quality and
regression, correlation coefficient, autoregressive integrated moving average (ARIMA), Box–
Jenkins, residual autocorrelation function (ACF), residual partial autocorrelation function
(PACF), lag, fractal, Hurst exponent, and predictability index were calculated [26].

Regularly inspecting the quality of the water might be good practice for ensuring that
the water is safe to drink. Therefore, it is suggested [27] that a real-time monitoring system
is highly required to assess and forecast future water quality indicators using ML and the
IoT. The time series pattern in the data was extracted using a long short-term memory
neural network (LSTM NN) and the wWQPs were obtained using sensors such as a pH
sensor, turbidity sensor, and total dissolved solids (TDS) sensor, and the data was utilized
to forecast future parameter values [28]. The sensors, Arduino, and NodeMCU in the IoT
module can be embedded in the water supply to continuously monitor the parameters
and this assists users to receive early alerts in case of increased containment WQPs [29].
The water quality prediction model necessitates the usage of high-quality data. Big data



Electronics 2022, 11, 1927 4 of 35

is produced at a high rate in the process of building and operating smart water quality
monitoring systems based on the IoT, making water quality data difficult. A network
model was examined [30] and found that it is capable of merging distributed observation
data with geologically separated local models using smart sensor-based federated learning.
Furthermore, an optimal scheduler is proposed to improve the overall network system’s
efficiency by making use of real-time massive data arrivals. A deep learning approach
for forecasting water quality in IoT systems with the long-short term memory (LSTM)
algorithm can be used for forecasting the water quality indicators [31].

In the Karoon River of Iran, the ANN approaches, such as multilayer perceptron
(MLP), radial basis network, and adaptive neuro-fuzzy inference system (ANFIS) models
are used [32] to compute DO, BOD, and chemical oxygen demand COD levels. The models
included nine input water quality variables, including EC, pH, Ca, Mg, Na, turbidity, PO4,
NO3, and NO2, all of which were measured in river water. In addition, when RMSE, and
MAE indices, and coefficients of correlations (r2) for predicting DO, BOD, and COD were
compared, the MLP/BP model outperformed the ANN-RBF and ANFIS models [33]. It is
suggested that the ANN can be utilized as an effective tool to compute and forecast river
water quality metrics.

These approaches provide complete and efficient results, which are useful in the
comprehension of surface water recharge modeling, especially in delicate ecology [33]. The
understanding of water-sensitive parameters and major contaminated source identification
is advantageous for drinking water model construction and water quality analysis modeling.

3. Materials and Methods

In this section, we present the water quality parameter that is used for the analysis.
Along with this, we have presented the statistical and fractal approach for the ground water
quality analysis over the 13 districts of Uttarakhand.

3.1. Big Data-Based Framework for Water Quality Analysis

In this study, we proposed a big data-based framework for carrying out the water
quality analysis of Uttarakhand. Figure 1 illustrates the framework, which comprises
three different components named as ground water quality monitoring, big data analytics
platform, and water data. The first component describes the problems that are identified
as relevant to the ground water quality, which consist of water quality degradation, land
subsidence, interconnected ground water depletion, and ground water storage reduction.
At present, this study focused on the problems based on water quality degradation, and
land subsidence. In water quality degradation, the quality of water is analyzed based
on the contamination level identified in the water. This study carried out the research by
analyzing the WQP, such as turbidity, Cl−, Fe2+, As++, NO3

−, pH, Ca, Mg, FluoF-), total
dissolved salts (TDS), alkalinity, hardness, and sulphate (SO4

2−) of 13 districts to conclude
the water quality.

Land subsidence is a broad term that indicates the lower vertical movement of the
Earth’s surface, produced by both natural and human forces. Regarding the data, the field
data, remote sensing data, and simulated data are considered for the water quality analysis.
In the big data analytics platform, the data of the 13 district WQPs are collected based on
WQP, and the usable data are concluded from the data processing. Downscaling refers to
the strategies used to regionalize information from global climate models and generate
fine-scale climate change projections. Fine resolution information is required to better
localize WQP. Through the process of downscaling, big data analytics solutions can address
the mismatch between regional size data and local-scale information. Statistical modeling,
data mining, and pattern discovery and categorization are the analytics methods used to
analyze the collected data for making the decisions.
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Figure 1. Big data-based framework for water quality analysis.

3.2. Assimilation of IoT and ML (References)

Figure 2 illustrates the architecture that presents the implementation of IoT and ML
for the identification of the WQIs of every site based on the WQP data. The sensor node
is obtained from the field data related to the water parameters of every district of the
Uttarakhand. The field data are communicated to the cloud server LoRa and gateway. The
field data available in the cloud server are pre-processed for the transforming of the raw
data into an understandable format. Currently, there are different data-driven models,
statistical multivariate methods, such as weights of evidence, logistic regression, and a set
of AI or ML methods, such as genetic algorithms, adaptive neuro-fuzzy inference system,
support vector machines (SVM), artificial neural networks (ANN), and, more recently,
random forest (RF) that exist [34]. In hydrogeology investigations, multivariate statistical
approaches and ANN are the most widely utilized [35]. Unfortunately, these techniques
have a multitude of limitations, including their sensitivity to outlier values in logistic
regression and the opacity of neural networks. Currently, ML has advanced significantly in
recent years, and new methods have been developed to tackle some of the concerns stated
for the frequently used methods [36].

The developing form of the ML technique that employs ensembles of regressions is
gaining attention and this ensemble learning technique employs the same basic process
to generate repeated numerous predictions, which are then averaged to form a unique
model [37]. RF is one of ensemble learning, which is rapidly used for land-cover categoriza-
tion from sensed data, as well as other domains connected to the environment and water
resources [38]. An ensemble of regression (or classification) tree models used in the RF
algorithm technique and a succession of separate trees is constructed based on random sub
samples from the original data [39]. Each subsample has a decision tree, which is used to
forecast the response variable (or a class). The integration of many trees increases the likeli-
hood of developing an effective prediction model. The Algorithm 1’s accuracy is mostly
determined by the strength of the individual tree classifiers and their interdependence [40].

Here, an RF model is applied on the pre-processed data to identify the variability in
WQIs of every site. The WQPs of 13 districts (Uttarakhand) are retrieved in the excel format.
The dataset is classified as per the latitude and longitude of the respective district. Mean,
mode, standard deviation, median, kurtosis, and skewness are used to examine the time
series datasets. On the basis of the standard values of each parameter in every district (Site),
the variation in WQP is evaluated using the random forest (RF) model [41] and the means
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of the parameters are tuned with the coefficient of variation (CV). Now, the generated time
series dataset is employed in the fractional Brownian motion (FBM).
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Algorithm 1 Proposed random forest algorithm

1: Given a training set X = x1, x2 . . . xn
2: For each element x ∈ X, there is a response y: y ∈Y, Where Y = y1, y2 . . . yn
3: Each set is bagging B times, where B is independent parameter
4: This training set selects a random sample with replacement of the training set and also fits
decision trees to these sample.
For b = 1 . . . B
4.1: Sample, with replacement, n training examples from X1, Y1 = Xb, Yb
4.2: Train the regression tree fb on Xb, Yb

3.3. Water Quality Parameters Used

The current study is carried out in the various stress conditions, which include the
different elevations. The stress conditions refer to the geographical and geological variation
in 13 districts of the state Uttarakhand. The datasets of the surface water quality parameters
used in the study are obtained from the website of the Ministry of Water and Sanitation,
the Govt. of India, for the year 2016. Daily monitoring of the WQPs at each site show
anomalies, which is an indicator of the irregular pattern of water quality, and it is essential
to analyze the linkages among them.

The fractal indices FD, H, and PI of the mentioned thirteen water quality indices
(WQIs) are generated. The statistical analyses, such as mean, mode, standard deviation,
median, kurtosis, skewness, and coefficient of variation (CV) of each parameter, along with



Electronics 2022, 11, 1927 7 of 35

each experimental site are computed and compared with the geospatial distribution. The
box plots of all 13 water quality parameters (1-turbidity, 2-chloride (Cl−), 3-iron (Fe2+),
4-arsenic (As++), 5-nitrate (NO3

−), 6-pH, 7-calcium (Ca), 8-magnesium (Mg), 9-fluoride
(F−), 10-total dissolved salts (TDS), 11-alkalinity, 12-hardness, 13-sulphate (SO4

−)obtained
from different experimental sites (13 districts) are shown in Figure 3. In India, water quality
assessment and regulation will be taken care of by the Ministry of Drinking Water and
Sanitization, Govt. of India, which has given a standard limit of WQPs. Table 1 illustrates
the WQPs as per the Indian standard acceptance range (source: Methodology Manual for
Groundwater quality mapping, Rajiv Gandhi national drinking water mission [42]).
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Figure 3. Box plots of the ground water quality parameters in various sites (1–13).

Table 1. Observed water quality parameters with their symbols and site wise distribution of the
observed water quality parameters [42].

WQP BIS Guideline Values Observation Sites District Observed WQP in Each Site

Turbidity 2.5 NTU Site1 Almora 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Cl− 200–1000 mg/L Site2 Bageshwar 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Fe2+ 0.1 mg/L Site3 Chamoli 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

As++ 0.05 mg/L Site4 Champavat 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

NO3
− 45 mg/L Site5 Dehradun 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

pH 6.5 to 8.5 Site6 Nainital 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Ca 75 mg/L Site7 Pauri Garhwal 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

Mg 30 mg/L Site8 Pithoragarh 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

F− 1.0–1.5 mg/L Site9 Tehri Garhwal 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

TDS 200 mg/L Site10 Uttarkashi 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

Alkalinity 200 mg/L Site11 Udam Singh Nagar (USN) 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

Hardness 200–600 mg/L Site12 Haridwar 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

(SO4
2−) 200–400 mg/L Site13 Rudrapraygh 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13

3.4. Statistics Analysis

The statistics, including indices and multivariate of WQP time series, are analyzed us-
ing the mode, mean and median to calculate the standard deviation from the series datasets,
and spatially averaged frequency values. The sample dataset variability is assessed us-
ing standard deviation (Std), and kurtosis for data peakedness estimation. Skewness
techniques are used to estimate the symmetry between the data points in a particular
location. The range of variation in the data series within a sample time series is deter-
mined by the coefficient of variation. Regression analysis is carried out to understand
the interrelationship in the water quality parameters (WQPs) through regression between
the dependent variable (Y) and independent variable (X), which is represented by the
following regression equation:

Y = mX + C (1)
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where C is the integration constant.

Coefficient of regression = (myx) = r ∗(σy/σx) (2)

Coefficient of correlation =
[Ψ(XY)−Ψ(X)E(Y)]

[(Ψ(X2)−Ψ(X)2)(Ψ(Y2)−Ψ(Y)2)]
1/2 =

[
COV(X, Y)
σYσX

]
(3)

The predicted values for the variables are ψ(X), ψ(Y), ψ(XY) and σ is the standard
deviations of the variables.

3.5. Mathematical Analysis

WQPs are used in fractal prediction patterns, such as the chaotic, random, or determin-
istic structural form, to analyze the irregular pattern in the data time series. Identification,
categorization, and mapping of intensive water characteristics necessitate a continual
assessment of the natural resource data.

3.5.1. Fractal Dimension (FD)

Scientists and hydrologists are concerned about distinguishing between both clean and
polluted water and developing relationships between their characteristics. Furthermore,
local officials, especially those in developing countries, are finding it difficult to make
drinkable water available with the increased levels of contaminants. The oscillations of
environmental and also soil parameters, along with the dynamic interactions between
subsurface hydrology, influence the statistical association of water systems.

3.5.2. Hurst Exponent (H)

The Hurst exponent (H) is calculated using typical wavelet approaches and evaluated
by the regression equation. The coefficient of each water parameter indicates whether
or not it has Brownian time series (or true random walk) behavior with other variables.
Table 2 summarizes the statistical and fractal analyses and each WQI analysis.

The fractal and fractal dimension concept [43] was formulated by Benot Mandelbort
in the year 1975 and defined the “fraction or fractured”, which are governed by their self-
similarity characteristic. This means that they exhibit similar features across a wide range
of scales and that a single system has comparable qualities to the entire fractal. Owing to
its efficiency and automated computational complexity, fractal dimension estimates from
a fractal set have a variety of approaches. In several domains, box-counting is a popular
technique for analyzing image properties such as texture segmentation, classification, and
graphic analysis. Other prominent advantages of FD approaches include being able to
distinguish deterministic and randomness in time series datasets in the form of variance
and spectra distribution. The fractal is a mathematical approach used in fractal geometry to
investigate naturally complex phenomena, such as the structures of clouds and geographic
boundaries, as well as to differentiate between glacial and fluvial morphology. Fractal
based on the degree of multifractality analysis for landscapes of glaciers and rivers has been
examined and has found that more glaciers have a more complicated structure than rivers.
The Hausdorff dimension is the most fundamental definition of FD; however, other common
interpretations that are simple to calculate include box-counting and box dimension.

The Hurst exponent (H) is a factual variable analysis with exponential-scaling; it
is an indicator of a time series long-term memory. The H and FD are also inextricably
linked, indicating the roughness of a surface. The H can be persistent (0.5 < H ≤ 1) or anti-
persistent 0 ≤ H < 0.5) in a time series, and when the data are not inter-correlated, H = 0.5
indicates that the series is unpredictable. Because it provides statistical self-similarity
relationships, this method is applied in a variety of complicated engineering domains. The
Hurst exponent of time series is defined as follows in terms of the exponential growth
scaling relation.
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Table 2. (a): Skewness variation in the water quality indices in 13 experimental sites. (b): Kurtosis
variation in the water quality indices in 13 experimental sites.

(a): Skewness Variation in the Water Quality Indices in 13 Experimental Sites

Parameters/
Sites Cl− Fe2+ As++ Ni pH Ca Mg Fl SO42− TDS Alkalinity Hardness Turbidity

1 6.905 6.252 1.193 2.312 −1.170 6.159 4.308 1.009 5.686 1.916 4.257 2.313 5.851

2 5.808 10.923 NA 7.853 0.148 0.122 0.222 2.133 8.012 3.089 1.277 0.416 2.572

3 1.874 2.359 2.418 1.980 −6.358 0.823 3.632 1.712 1.018 1.073 0.369 −0.414 1.305

4 4.613 6.275 3.346 3.212 0.583 −0.439 1.345 −0.181 NA 5.386 1.966 1.711 12.730

5 3.356 11.994 5.453 3.882 −1.264 0.569 1.314 1.281 2.036 0.729 0.581 0.610 2.370

6 5.257 17.132 15.162 4.524 0.031 1.545 0.775 −0.514 4.337 −0.005 0.917 0.606 9.251

7 5.694 12.756 NA 4.055 −2.259 2.183 2.111 9.850 4.440 2.499 1.681 1.243 3.230

8 14.016 8.887 20.273 4.499 −9.093 −0.795 −0.012 2.625 3.492 0.617 0.960 −0.828 0.452

9 1.528 11.713 NA 1.011 −7.377 2.841 9.567 0.768 2.400 1.781 0.331 1.494 15.363

10 9.792 2.487 NA 1.807 −3.082 0.433 0.875 1.296 4.635 2.336 1.667 3.992 −0.072

11 7.197 1.944 NA 5.579 −3.385 1.283 −0.016 7.930 2.669 1.763 0.958 1.241 0.332

12 3.698 5.475 NA 2.978 −0.038 −0.365 0.534 0.653 0.855 2.731 −0.882 −0.697 2.326

13 4.738 6.389 2.067 3.730 −1.031 2.128 1.641 2.592 3.378 3.672 1.554 0.657 9.024

(b): Kurtosis Variation in the Water Quality Indices in 13-Experimental Sites.

Parameters/
Sites Cl− Fe2+ As++ Ni pH Ca Mg Fl SO4

2− TDS Alkalinity Hardness Turbidity

1 56.972 41.528 −0.580 6.503 −0.542 42.616 23.577 1.556 36.720 11.238 17.204 5.354 37.192

2 36.427 125.136 NA 76.130 −0.306 −1.294 −0.882 3.472 71.894 11.006 0.940 −1.073 13.487

3 3.494 9.040 3.890 5.284 44.215 0.170 14.986 3.116 0.822 0.394 0.544 2.258 1.530

4 23.047 53.385 9.306 8.761 1.306 −0.516 −0.050 −1.037 NA 35.433 3.620 2.367 163.653

5 10.825 164.378 47.773 19.055 −0.348 −0.321 1.734 1.503 7.979 −0.568 −0.586 −0.361 7.101

6 28.123 293.666 240.317 20.643 1.704 3.533 0.320 −0.249 20.001 −0.058 1.348 3.150 115.733

7 38.313 223.392 NA 16.440 3.253 4.487 4.264 150.762 18.306 6.399 2.867 0.946 11.343

8 245.498 127.897 411.000 39.478 96.398 −0.746 −0.585 7.950 19.345 −1.409 −0.319 3.340 3.711

9 1.387 150.451 NA 1.165 74.926 11.549 127.310 −0.157 7.224 3.376 −0.683 8.679 257.864

10 100.525 15.268 NA 6.166 8.261 0.036 0.624 0.893 37.757 9.225 2.497 25.920 −0.919

11 54.539 6.625 NA 33.459 10.514 2.522 −0.547 62.923 9.809 1.799 0.589 3.236 0.445

12 12.769 30.247 NA 7.812 −2.106 −1.362 −1.229 −0.725 0.575 7.058 0.103 −0.641 6.968

13 23.210 47.562 2.293 19.727 −0.904 7.648 2.906 6.845 15.905 16.924 3.342 1.227 98.599

The H of a real-valued time series is defined as follows in terms of the exponential
growth scaling relation:〈

R(n)
S(n)

〉
= CnH , as ‘n’ approaches to infinity (4)

C indicates constant, angular brackets 〈· · · 〉 imply the anticipated value, S(n) is the
standard deviation of the initial ‘n’ data of the series {X1, X2, · · · , Xn}; R(n) is their range,
which is as follows:

R(n) = max{X1, X2, · · · , Xn} −min{X1, X2, · · · , Xn} (5)

H is calculated from the R/S technique and calculated from the wavelets approach for
the time series.

3.5.3. Evaluation of Wavelets Approach for H

If f (t) is a self-affine random process and position parameter ‘t’ (i.e., time or distance),
a > 0 is a dilation factor and w(t) is an initial wavelet.

wt,a
(
t′
)
=

1√
a

w
(

t′ − t
a

)
(6)
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If the continuous wavelet transform of f (t) is its shifted wt,a(t′), dilated, and scaled
version, then f (t) is specified as the following:

W(t, a) =
1√
a

∫ ∞

−∞
wt,a

(
t′
)

f
(
t′
)
dt′ (7)

Trend analysis f (t) is self-affine and the dispersion of W(t, a) will range monotonically
with the following expansion factor:

V(a) =
〈
W2〉− 〈W2〉 ∝ aδ (8)

when the exponent ‘δ’ is in the middle of −1 and 3 (i.e., −1 ≤ δ ≤ 3), the H is specified as
the following:

Hw =

{
δ+1

2 i f −1 ≤ δ < 1 (FGN)
δ−1

2 i f 1 ≤ δ ≤ 3 (FBM)
(9)

FGN implies fractal Gaussian noise, FBM implies fractional Brownian motion;
H is defined in terms of fractal dimension (D) [43] as the following:

H = 2− D (10)

where H is the Hurst exponent; D is the fractal dimension lying between 1.0 and 2.0.
Now, the predictability index (PI) is given as

PI = 2|D− 1.5| = 2|0.5− H| (11)

The data series is uncertain for values of PI near to zero, whereas, the data series is
predictable for values close to 1.

4. Results and Discussion
4.1. Distribution of the WQPs under Different Stress Conditions: A Quantitative and
Qualitative Analysis

Figure 4 shows the quantitative correlation between the major water quality metrics,
indicating that fluctuation in these characteristics is caused by variability throughout the
originating ecosystem and is influenced by the topographical conditions through which it
flows down.

The mean, median, mode, and standard deviation of the daily data series for the year
2016 have been plotted for all 13 experimental sites. In site 3 (Chamoli district), the highest
mean value is observed particularly for the Cl−, Fe2+, As++, NO3

− and hardness, and apart
from this, the TDS is the second highest among all the experimental sites. The mean value
and standard deviation (127.6) of Cl− is observed to be the highest in experiment site 4 (i.e.,
Champavat). Ca mean concentration is found to vary among the experiment sites.

The mode values of water quality parameters for turbidity, Cl−, Fe2+, As++, NO3
−,

pH, and SO4
2− are within almost same range (0–1) in all experimental sites, except for

Ca, Mg, alkalinity, and hardness, which show the highest variation in the district Nainital,
Bageshwer, Champavat, USN and Haridwar, respectively.

The median values of the parameters are also almost within the same range for
all experimental sites, except Cl−, which is found to have the highest concentration in
Chamoli and Cahasahigh, in Pithoragarh, followed by Bageshwer, USN, Chamoli district.
The concentration of TDS is observed to be high in the experimental sites, i.e., Nainital,
Pithoragarh, Almora, Uttarkashi, USN, Champavat, and Bageswar. The highest alkalinity
is observed in Nainital followed by Uttarakashi, Pithoragarh, Bageswer, Pauri Garhwal,
and Almora districts. Hardness concentration is found to be the highest in Haridwar and
followed by Pithoragarh, Bageshwer, Dehradun, USN, Uttarakashi, and least in Almora.

The standard deviations of the parameters such as turbidity, Fe2+, As++, NO3
−, pH,

and F− are within almost the same ranges among all experimental sites, except some
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fluctuations were observed for Cl−, Ca, Mg, TDS, alkalinity, hardness and SO4
2−. The

statistical parameters, i.e., mean, mode, median, and standard deviation of hardness
sampling, are found more in experimental site 3 (Chamoli district). The variation in the
turbidity, Cl−, Fe2+, NO3

−, pH and F− parameters have almost reached the satisfaction
level in all experimental sites.
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4.2. Spatial Variation in WQPs in Different Stress Conditions

Geo-spatial maps are prepared using remote sensing and GIS techniques, which repre-
sent the distribution of WQPs over the region. The geo-spatial maps of the GWQ parameters
under different geographical and geological stress conditions over the 13 districts of state
Uttarakhand, which reveals through the extrapolation maps the distribution in different
stress conditions, are shown in Figure 5.
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stress conditions.

Minimum and maximum distribution of the WQPs is observed in the studied region
of the state Uttarakhand. The minimum and maximum observed point values of As++

are 0.0–0.007 mg/L. The maximum range is observed at the Rudrapryag district. The
Cl distribution minimum of 4.43 mg/L and maximum of 36.1 mg/L content level in
water is observed in the study region and higher quantities are found in the Rudrapryag
and Champavat districts. Ca concentration is observed to be higher in the Pithoragarh,
Bageshwar and Haridwar regions with minimum 7.77 mg/L and maximum 123.4 mg/L
distribution. Higher 306.6 mg/L alkalinity in water quality is observed in the Haridwar
district. Total dissolve salt concentration (TDS) varies from the minimum to maximum
range, which is 3.08 to 258.5 mg/L, in the study region and a high level is observed in
Nainital district.

F− varies from 0.10 to 2.66 mg/L and a higher concentration is observed in the USN
district. The hardness level in the water quality is observed to vary from 45.1 to 371.8 mg/L
in the whole study region and the highest concentration is found in the Haridwar district.
Mg content level in the water samples is found to be between 5.03 and 55.9 mg/L and higher
values are observed in Pithoragarh, followed by the Bageshwar district. Higher levels of
SO4− is observed in the USN district water level, which varies between 0.012 and 40.5 mg/L.
NO3

− level is estimated and a higher level is observed in the Haridwar district, which is
between 1.36 and 14.6 mg/L. The pH values lie almost in the range, except in Haridwar,
Rudrapyag and some regions of the Dehradun and Almora districts. Fe2+ concentration’s
minimum is 0.03 mg/L and maximum 1.05 mg/L and a higher concentration is found in
the Haridwar region. Turbidity level in the water samples is found in the range of 0.35 to
11.9 NTU and a higher concentration is observed in the Almora district.
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4.3. WQI Distribution and Predictability Analysis

Figure 6 demonstrated the variation in the WQIs in different experimental sites (1-
13) and all WQPs in each site. The Hurst exponent (H), fractal dimension (FD), and
predictability (PI) obtained are graphically represented to show the anomalies among the
parameters. The interpretation of these indices has been carried out for all 13 experimental
sites and site-wise descriptions of the indices are demonstrated and analyzed.
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water quality parameters in the 13 different locations of the State Uttarakhand.

For experimental site 1, the turbidity has a persistent relationship with each WQI,
i.e., NO3

−, Fe2+, As++, pH, Ca, Mg, Fl, SO4
2−, TDS, alkalinity and hardness, but has

an anti-persistent relationship with Cl−. Similarly, Cl−, Fe2+, NO3
− and F− have shown

persistent behavior with all WQIs, whereas the pH, Ca, Mg, TDS, alkalinity, and SO4
2− have

shown anti-persistent behavior with all WQIs. For experimental site 2, the turbidity has
a persistent relationship with each WQI, i.e., Fe2+, Ni, pH, Ca, Mg, Fl, SO4

2−, TDS, alkalinity
and hardness, but has an anti-persistent relationship with Cl−, and As++. Similarly, Cl−,
Fe2+, NO3

− and F− have shown persistent behavior with all WQIs, whereas the pH, Ca,
Mg, TDS, alkalinity, and SO4

2− have shown anti-persistent behavior with all WQIs.
For experimental site 3, the parameters that have shown the most persistent relation-

ship are turbidity, Cl−, Fe2+, As++ Ni, Mg, SO4
2−, and partially F−, but the parameters pH,

Ca, TDS, alkalinity and hardness have an anti-persistent relationship. Similarly, for site
4, the persistent behavior is observed between the turbidity, Cl−, Fe2+, As++, NO3

−, Ca,
partially Mg, TDS and SO4

2−. The parameters pH, Ca, F−, alkalinity, and hardness show
anti-persistent behavior among other WQIs.
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In site 5, persistent behavior is observed between almost all WQIs, except Ca, TDS,
and alkalinity. In experimental site 6, the persistence relationship is observed among almost
all the WQIs, except F−. In site 7, persistence behavior is observed among Fe2+, pH, Ca,
Mg, and hardness, but the anti-persistence relationship is observed partially in turbidity,
Cl−, NO3

−, F−, TDS, SO4
2− and alkalinity. In experimental site 8, all the WQIs, such as

turbidity, Cl−, Fe2+, NO3
− and TDS, have shown persistence behavior except pH, Ca, Mg,

and partially hardness and SO4
2−, which have shown the anti-persistence relationship. In

experimental site 9, turbidity, Cl−, Fe2+, pH, Ca, Mg, NO3
− and TDS have shown persis-

tence behavior and F−, hardness and SO4
2− have shown the anti-persistence relationship.

In experimental site- 0, turbidity, Cl−, Fe2+, NO3
−, TDS and alkalinity have shown persis-

tence behavior, and pH, Ca, Mg, F−, hardness and SO4
2− have shown the anti-persistence

relationship. In the experimental site 11, all the studied WQIs have shown persistence
behavior except the pH parameter and in site 12, all WQIs have shown unpredictability
among each parameter.

In experimental site 13, turbidity, Fe2+, NO3
−, F−, TDS and alkalinity have shown

less predictability, whereas Cl−, pH, Ca, Mg, hardness, and SO4
2− have shown the anti-

persistence relationship.

4.4. WQPs Analysis

In this section, the WQPs are analyzed by the variation in each parameter under
the different stress conditions or experimental sites. The variation in the parameters
is analyzed by their distribution statistics, such as mean, median, mode and standard
deviation (Figure 4) among the datasets and spatial variation in terms of skewness and
kurtosis are represented in Figure 7. The correlation matrix is established among the
different WQPs and is summarized in Table 3 for each experimental site (1–13). Table 3
describes the correlation among the WQP of the 13 sites, where it presents the correlation
of one WQP with another WQP. In site ‘1′, the alkalinity is strongly correlated with Ca and
Mg. Hardness is also strongly correlated with Mg. It has been observed from 13 sites that
the alkalinity and hardness have a strong correlation ratio with Mg, Ca and TDS, except
in site 2, site 5, site 6, and site 7. This table demonstrates that the WQPs are within the
standard values except a few sites, as the alkalinity is high in these few sites. Considering
skewness, kurtosis, SD and correlation matrix results among the different data series over
the different sites 1–13, a comprehensive analysis has been carried out and described in the
following sub sections.

Table 3. Correlation matrix for water quality parameters over different sites 1–13.

Site ‘1’

Parameters/r2 Turbidity Cl− Fe Ar NO3
− pH Ca Mg F− TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.021 1

Fe 0.267 0.013 1

Ar 0.160 0.031 0.113 1

NO3
− 0.002 0.182 0.004 0.019 1

pH 0.015 0.011 0.013 0.114 0.089 1

Ca 0.002 0.059 0.001 0.010 0.020 0.009 1

Mg 0.006 0.135 0.005 0.034 0.107 0.039 0.488 1

Fl 0.000 0.011 0.001 0.008 0.067 0.002 0.012 0.019 1

TDS 0.032 0.115 0.025 0.071 0.055 0.277 0.005 0.098 0.020 1

Alkalinity 0.003 0.083 0.001 0.013 0.356 0.013 0.724 0.611 0.031 0.041 1

Hardness 0.044 0.208 0.030 0.210 0.015 0.084 0.330 0.590 0.011 0.150 0.346 1

SO4
2− 0.000 0.356 0.004 0.000 0.011 0.007 0.152 0.229 0.001 0.088 0.267 0.146 1
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Table 3. Cont.

Site ‘2’

Parameters/r2 Turbidity Cl− Fe Ar NO3
− pH Ca Mg F− TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.018 1

Fe 0.015 0.001 1

Ar 0.050 0.006 0.026 1

NO3
− 0.000 0.017 0.016 0.291 1

pH 0.035 0.014 0.002 0.025 0.001 1

Ca 0.002 0.000 0.097 0.004 0.024 0.000 1

Mg 0.020 0.001 0.109 0.003 0.262 0.009 0.126 1

Fl 0.011 0.000 0.008 0.013 0.002 0.004 0.229 0.000 1

TDS 0.026 0.000 0.007 0.197 0.002 0.003 0.051 0.032 0.000 1

Alkalinity 0.066 0.025 0.119 0.000 0.096 0.010 0.398 0.041 0.185 0.119 1

Hardness 0.103 0.064 0.044 0.016 0.035 0.013 0.231 0.060 0.089 0.099 0.473 1

SO4
2− 0.014 0.007 0.024 0.004 0.014 0.001 0.011 0.005 0.022 0.167 0.001 0.059 1

Site ‘3’

Parameters/r2 Turbidity Cl− Fe Ar NO3
− pH Ca Mg F− TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.207 1

Fe 0.036 0.005 1

Ar 0.100 0.028 0.045 1

NO3
− 0.079 0.044 0.016 0.440 1

pH 0.221 0.053 0.027 0.038 0.111 1

Ca 0.173 0.060 0.005 0.009 0.127 0.417 1

Mg 0.277 0.07 0.03 0.07 0.21 0.28 0.27 1

Fl 0.210 0.089 0.064 0.039 0.100 0.246 0.120 0.259 1

TDS 0.320 0.060 0.015 0.110 0.124 0.350 0.346 0.401 0.252 1

Alkalinity 0.224 0.008 0.023 0.081 0.133 0.407 0.491 0.439 0.200 0.665 1

Hardness 0.366 0.171 0.024 0.091 0.221 0.442 0.520 0.553 0.346 0.725 0.701 1

SO4
2− 0.208 0.192 0.025 0.088 0.053 0.228 0.224 0.383 0.342 0.414 0.363 0.570 1

Site ‘4’

Parameters/r2 Turbidity Cl− Fe Ar NO3
− pH Ca Mg F− TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.001 1

Fe 0.049 0.002 1

Ar 0.052 0.002 0.046 1

NO3
− 0.025 0.036 0.020 0.276 1

pH 0.007 0.025 0.035 0.064 0.050 1

Ca 0.045 0.017 0.062 0.009 0.027 0.280 1

Mg 0.015 0.001 0.029 0.026 0.005 0.262 0.500 1

Fl 0.004 0.153 0.061 0.031 0.144 0.138 0.087 0.059 1

TDS 0.006 0.001 0.002 0.001 0.150 0.056 0.040 0.021 0.013 1

Alkalinity 0.007 0.077 0.030 0.002 0.067 0.332 0.496 0.201 0.068 0.025 1

Hardness 0.023 0.031 0.054 0.029 0.007 0.594 0.709 0.424 0.106 0.057 0.655 1

SO4
2− 0.029 0.018 0.007 0.018 0.025 0.154 0.172 0.046 0.074 0.006 0.215 0.284 1
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Table 3. Cont.

Site ‘5’

Parameters/r2 Turbidity Cl− Fe Ar NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.168 1

Fe 0.019 0.003 1

Ar 0.004 0.003 0.001 1

NO3
− 0.000 0.000 0.000 0.002 1

pH 0.001 0.001 0.004 0.000 0.000 1

Ca 0.020 0.027 0.067 0.003 0.045 0.070 1

Mg 0.024 0.014 0.000 0.000 0.000 0.027 0.348 1

Fl 0.001 0.016 0.030 0.005 0.020 0.000 0.040 0.001 1

TDS 0.047 0.002 0.196 0.002 0.015 0.014 0.272 0.002 0.098 1

Alkalinity 0.086 0.117 0.022 0.006 0.130 0.011 0.022 0.012 0.169 0.093 1

Hardness 0.035 0.008 0.011 0.001 0.001 0.008 0.113 0.152 0.036 0.001 0.130 1

SO4
2− 0.002 0.010 0.016 0.004 0.001 0.007 0.002 0.007 0.166 0.023 0.037 0.033 1

Site ‘6’

Parameters/r2 Turbidity Cl− Fe Ar NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.004 1

Fe 0.000 0.000 1

Ar 0.000 0.000 0.000 1

NO3
− 0.003 0.415 0.000 0.106 1

pH 0.019 0.025 0.003 0.001 0.008 1

Ca 0.000 0.130 0.001 0.001 0.024 0.002 1

Mg 0.002 0.036 0.007 0.001 0.000 0.000 0.499 1

Fl 0.001 0.040 0.001 0.008 0.038 0.054 0.001 0.009 1

TDS 0.006 0.010 0.006 0.001 0.006 0.043 0.001 0.004 0.086 1

Alkalinity 0.015 0.046 0.002 0.001 0.438 0.011 0.215 0.061 0.063 0.068 1

Hardness 0.007 0.008 0.000 0.000 0.019 0.041 0.151 0.068 0.012 0.175 0.485 1

SO4
2− 0.005 0.351 0.000 0.000 0.025 0.003 0.088 0.003 0.077 0.019 0.118 0.125 1

Site ‘7’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.014 1

Fe 0.033 0.001 1

NO3
− 0.025 0.050 0.011 1

pH 0.001 0.015 0.001 0.022 1

Ca 0.019 0.001 0.015 0.090 0.007 1

Mg 0.007 0.019 0.001 0.090 0.004 0.305 1

Fl 0.097 0.004 0.002 0.069 0.006 0.020 0.050 1

TDS 0.040 0.060 0.000 0.049 0.000 0.000 0.005 0.031 1

Alkalinity 0.101 0.075 0.006 0.000 0.001 0.151 0.017 0.071 0.136 1

Hardness 0.035 0.026 0.003 0.005 0.000 0.069 0.213 0.013 0.091 0.110 1

SO4
2− 0.006 0.210 0.019 0.003 0.007 0.044 0.001 0.104 0.066 0.230 0.072 1
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Table 3. Cont.

Site ‘8’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.022 1

Fe 0.001 0.000 1

NO3
− 0.064 0.002 0.001 1

pH 0.104 0.001 0.000 0.055 1

Ca 0.299 0.063 0.000 0.036 0.100 1

Mg 0.357 0.080 0.000 0.064 0.131 0.787 1

Fl 0.050 0.000 0.002 0.176 0.050 0.003 0.035 1

TDS 0.159 0.004 0.001 0.041 0.048 0.034 0.070 0.243 1

Alkalinity 0.228 0.059 0.003 0.092 0.146 0.139 0.241 0.415 0.521 1

Hardness 0.356 0.046 0.001 0.137 0.152 0.540 0.623 0.344 0.308 0.616 1

SO4
2− 0.012 0.000 0.000 0.005 0.009 0.014 0.022 0.064 0.000 0.030 0.039 1

Site ‘9’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.001 1

Fe 0.098 0.004 1

NO3
− 0.000 0.004 0.112 1

pH 0.000 0.800 0.003 0.000 1

Ca 0.048 0.004 0.037 0.150 0.006 1

Mg 0.000 0.057 0.003 0.031 0.085 0.000 1

Fl 0.000 0.000 0.056 0.001 0.001 0.002 0.398 1

TDS 0.011 0.116 0.014 0.013 0.150 0.012 0.006 0.024 1

Alkalinity 0.431 0.012 0.120 0.188 0.004 0.188 0.014 0.009 0.000 1

Hardness 0.002 0.470 0.001 0.014 0.625 0.003 0.017 0.216 0.080 0.023 1

SO4
2− 0.004 0.525 0.003 0.006 0.605 0.000 0.020 0.300 0.050 0.018 0.848 1

Site ‘10’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.000 1

Fe 0.001 0.004 1

NO3
− 0.013 0.001 0.006 1

pH 0.003 0.081 0.031 0.019 1

Ca 0.010 0.099 0.007 0.045 0.394 1

Mg 0.226 0.031 0.037 0.046 0.017 0.153 1

Fl 0.018 0.032 0.176 0.038 0.225 0.602 0.191 1

TDS 0.002 0.795 0.010 0.007 0.042 0.011 0.010 0.002 1

Alkalinity 0.025 0.276 0.002 0.016 0.074 0.096 0.182 0.093 0.167 1

Hardness 0.030 0.042 0.004 0.016 0.071 0.201 0.410 0.270 0.000 0.417 1

SO4
2− 0.007 0.003 0.025 0.085 0.261 0.372 0.238 0.518 0.008 0.037 0.211 1
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Table 3. Cont.

Site ‘11’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.003 1

Fe 0.005 0.030 1

NO3
− 0.000 0.789 0.049 1

pH 0.028 0.006 0.043 0.020 1

Ca 0.003 0.067 0.003 0.058 0.032 1

Mg 0.001 0.361 0.011 0.420 0.038 0.622 1

Fl 0.030 0.205 0.010 0.242 0.028 0.045 0.228 1

TDS 0.000 0.537 0.030 0.530 0.059 0.090 0.371 0.198 1

Alkalinity 0.013 0.419 0.013 0.386 0.054 0.379 0.568 0.166 0.606 1

Hardness 0.009 0.303 0.004 0.308 0.082 0.445 0.661 0.209 0.572 0.747 1

SO4
2− 0.003 0.840 0.029 0.826 0.006 0.076 0.448 0.236 0.563 0.462 0.330 1

Site ‘12’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.051 1

Fe 0.001 0.377 1

NO3
− 0.011 0.626 0.296 1

pH 0.190 0.000 0.107 0.015 1

Ca 0.105 0.003 0.000 0.045 0.137 1

Mg 0.239 0.004 0.005 0.017 0.169 0.408 1

Fl 0.191 0.001 0.018 0.000 0.000 0.018 0.061 1

TDS 0.007 0.094 0.000 0.082 0.008 0.096 0.253 0.005 1

Alkalinity 0.023 0.079 0.005 0.144 0.100 0.368 0.518 0.023 0.636 1

Hardness 0.191 0.000 0.001 0.022 0.160 0.304 0.341 0.293 0.083 0.196 1

SO4
2− 0.037 0.265 0.113 0.325 0.053 0.279 0.212 0.005 0.222 0.342 0.083 1

Site ‘13’

Parameters/r2 Turbidity Cl− Fe NO3
− pH Ca Mg Fl TDS Alkalinity Hardness SO4

2−

Turbidity 1

Cl− 0.007 1

Fe 0.005 0.186 1

NO3
− 0.173 0.007 0.016 1

pH 0.067 0.000 0.000 0.022 1

Ca 0.007 0.004 0.056 0.016 0.031 1

Mg 0.029 0.032 0.190 0.001 0.083 0.008 1

Fl 0.005 0.056 0.224 0.015 0.002 0.242 0.143 1

TDS 0.002 0.072 0.262 0.000 0.053 0.194 0.037 0.255 1

Alkalinity 0.001 0.072 0.237 0.001 0.012 0.488 0.117 0.397 0.536 1

Hardness 0.001 0.046 0.006 0.000 0.010 0.015 0.225 0.028 0.005 0.031 1

SO4
2− 0.000 0.000 0.000 0.001 0.000 0.214 0.045 0.016 0.005 0.064 0.011 1
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Figure 7. Kurtosis and skewness curve for each (13) parameters over 13 experimental site. 
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respectively; however, the pH mode is 0.25. These numbers are nearly comparable and 
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served in almost all the experimental sites, except in the Tehri and Pithogagarh site which 
shows high kurtosis; hence, except for these two sites, the curve is platykurtic. It is ob-
served that the element pH has the Brownian time-series behavior with F-, persistent be-
havior with Ca, Mg, Fe2+ and NO3−, and anti-persistent behavior with various parameters 
such as turbidity, Cl_, TDS, alkalinity, hardness and SO42−. 

The TDS is observed for all the experimental site WQPs and it can be observed that 
the fitness curve does not follow the usual behavior because the mean, median, and mode 
values have a highly varied nature. The TDS values are not closely related within the time 
series dataset for all the experimental sites; hence, the standard deviation is very high. 
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pH, Fl, and SO42−, TDS, and turbidity, which exhibit a Brownian time series. It has a nega-
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have persistent behavior in almost all the experimental sites, while Fe2+, Ca, Mg, and hard-
ness parameters have anti-persistent activity. 

4.4.2. Variation in Chloride, Flouride, Nitriate and Sulphate 
The Cl- concentration varies with mean values from the lowest (0.46 mg/L) to the 

highest (35.2 mg/L) across the experimental sites, i.e., Bageshwar and Rudraprayag dis-
tricts, respectively. Even the median varies from 0 to 1, except 3.1 and 9 for the Pithoragrah 
and Almora districts, respectively, although the mode values are in the order of 0, indi-
cating that the data are laid normally between the sample points and there is also a normal 
distribution of the SD, except for the large standard deviation, i.e., 135.8 and 127.6 for the 
Champavat and Rudrapyagh districts. The kurtosis and skewness variation has shown 
that the curve is symmetrical, except for some experimental sites with larger kurtosis. 
With the parameters F-, SO42−, and turbidity, Cl- has Brownian time series (true random 
walk) behavior. As a result, the curve has a platykurtic shape. Turbidity, NO3−, TDS and 
alkalinity show persistent behavior, while Fe2+, pH, Ca, Mg, and hardness show anti-per-
sistent behavior. 

The F- element datasets for all the experimental sites have shown normal behavior 
and also the mean and median values are closely related. The skewness and kurtosis 
curves indicate the platykurtic nature of all the sites, which also have a lower standard 

Figure 7. Kurtosis and skewness curve for each (13) parameters over 13 experimental site.

4.4.1. Variation in Turbidity, Alkalinity, Hardness, pH and TDS

The turbidity in almost all the experimental sites has a normal distribution, with
the lowest mean value (0.352 mg/L) and highest (11.9 mg/L) in the Pauri Garhwal and
Almora districts, respectively. The median (0 to 2.3), and mode (0–1)) values show roughly
equal variations among all the sites. The sample data points are found to have a standard
deviation of the lowest value of 1.04 in USN and highest of 45.1 in Almora, and 31.1 in the
Rudrapyarg district. The SD values indicate that the WQPs are close together for other
experimental sites, except for the Almora and Rudraprayag districts. The curve between
skewness and kurtosis is not symmetrical in most of the cases. Figure 7 reveals that the
positive skewness and kurtosis value indicates that the data series are platykurtic for all
sites except the Uttarkashi district, where it shows negative variation.

Alkalinity has shown the higher average value, which indicates the alkaline nature
in the data series. In most of the experimental sites, the alkalinity has shown the highest
median and mode values that are not substantially identical, indicating that the sample
data are largely distributed.

In a few experimental sites, the dataset shows a high standard deviation and a skew-
ness value that is close to zero. The curve between the skewness and kurtosis indicates
that the series is symmetrical and platykurtic. In most of the experimental sites, alkalinity
has shown persistence behavior with Cl−, F_, TDS, and SO4

2− parameters, and it shows
Brownian motion, while Alkalinity has also shown an anti-persistence nature with turbidity,
Fe2+, pH, Ca, Mg, and hardness parameters in few cases.

The hardness of the WQPs has shown large mean, median, and standard deviation
values for almost all the studied experimental sites, which shows the distributed datasets
that are diversely significant from the mode value and the data series does not behave
normally. While the M=mode has zero values in most of the sites, a few sites have large
values, especially for the locations of the Kumaun region. In most of the experimental sites,
the datasets have a skewness value that is close to one or zero. The curve between skewness
and kurtosis indicates that the series is symmetrical and platykurtic. The data series of
the few sites have negative skewness values with the Brownian time series. Turbidity,
Cl−, NO3

−, pH, Ca, F_, TDS, alkalinity, and SO4
2− all exhibit persistent activity, while Fe

parameters exhibit anti persistent behavior.
The pH of the water samples is observed to be in the standard range in all the exper-

imental sites, with average and median values being nearly identical, at 7.189 and 7.20,
respectively; however, the pH mode is 0.25. These numbers are nearly comparable and indi-
cate that the behavior is normal and the pH is symmetrical because the standard deviation
(SD) is 0.691. The negative skewness and corresponding negative kurtosis are observed
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in almost all the experimental sites, except in the Tehri and Pithogagarh site which shows
high kurtosis; hence, except for these two sites, the curve is platykurtic. It is observed that
the element pH has the Brownian time-series behavior with F−, persistent behavior with
Ca, Mg, Fe2+ and NO3

−, and anti-persistent behavior with various parameters such as
turbidity, Cl−, TDS, alkalinity, hardness and SO4

2−.
The TDS is observed for all the experimental site WQPs and it can be observed that

the fitness curve does not follow the usual behavior because the mean, median, and mode
values have a highly varied nature. The TDS values are not closely related within the time
series dataset for all the experimental sites; hence, the standard deviation is very high. TDS
has shown persistence behavior with the distribution of other elements, such as Cl−, pH,
Fl, and SO4

2−, TDS, and turbidity, which exhibit a Brownian time series. It has a negative
skew and a platykurtic curve for a few experimental sites. NO3

−, Cl− and alkalinity have
persistent behavior in almost all the experimental sites, while Fe2+, Ca, Mg, and hardness
parameters have anti-persistent activity.

4.4.2. Variation in Chloride, Flouride, Nitriate and Sulphate

The Cl− concentration varies with mean values from the lowest (0.46 mg/L) to the
highest (35.2 mg/L) across the experimental sites, i.e., Bageshwar and Rudraprayag districts,
respectively. Even the median varies from 0 to 1, except 3.1 and 9 for the Pithoragrah and
Almora districts, respectively, although the mode values are in the order of 0, indicating that
the data are laid normally between the sample points and there is also a normal distribution
of the SD, except for the large standard deviation, i.e., 135.8 and 127.6 for the Champavat
and Rudrapyagh districts. The kurtosis and skewness variation has shown that the curve is
symmetrical, except for some experimental sites with larger kurtosis. With the parameters
F−, SO4

2−, and turbidity, Cl− has Brownian time series (true random walk) behavior. As
a result, the curve has a platykurtic shape. Turbidity, NO3

−, TDS and alkalinity show
persistent behavior, while Fe2+, pH, Ca, Mg, and hardness show anti-persistent behavior.

The F− element datasets for all the experimental sites have shown normal behavior
and also the mean and median values are closely related. The skewness and kurtosis
curves indicate the platykurtic nature of all the sites, which also have a lower standard
deviation value, demonstrating the closeness between the data points. F− has a Brownian
time series (true random walk) with all the studied parameters, such as NO3

− and hardness
parameters. F− displays persistent behavior with turbidity, Cl−, SO4

2−, TDS, and alkalinity,
as well as anti-persistent behavior with Fe2+, pH, Ca, and Mg in a few experimental sites.

It is observed that for all the experimental sites, the NO3
− element varies with normal

distribution and it is evident from the series mean and median values. Apart from these,
the standard deviation of the dataset overall experimental sites appears to be within the
standard values, and this denotes that the sample data are near one another. The skewness
and kurtosis variation is symmetrical; hence, the platykurtic curve, as with kurtosis, is less
than 3. In most experimental sites, NO3

− has persistent behavior with other elements, such
as Cl−, F−, SO4

2−, TDS, alkalinity, hardness, and turbidity, while Ca, Mg, Fe2+ and PH
parameters have anti-persistent behavior.

In almost all the experimental sites, SO4
2− has less indication with the 0-mode value

and the mean and median values show many differences and are not the same. The WQPs
datasets are dispersive, as evidenced by the higher standard deviation. The skewness and
kurtosis values of the different data series indicated that the series are symmetrical and
platykurtic. SO4

2−in most of the cases provides real random-walk flow and exhibits both
persistent and anti-persistent behavior with turbidity, Cl−, TDS, and alkalinity parameters
in comparing the different experimental sites.

4.4.3. Variation in Iron, Arsenic, Calcium and Magnesium

The average, median, and mode values of Fe2+ are nearly equal; hence, its distribution
is observed under the standard or normal conditions. Dataset variation is observed to
be Close to each other and this is evident by the standard deviation among the WQPs,
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which vary from 0.03 to 7 in all the experimental sites. The skewness and kurtosis curves
are platykurtic for almost all the experimental sites because of the low variations, while
the high skewness indicates that it is not symmetrical and also the kurtosis value is too
large. Brownian time series (True random walk) behavior is observed with NO3

−, F−, and
hardness parameters in the sample dataset having heavier outliers and Fe2+. It displays
persistent behavior with pH, Ca, and Mg parameters, but anti-persistent behavior with
Cl−, TDS, alkalinity, and SO4

2− factors.
The datasets for the As++ element are found in a few experimental sites and observed

with fewer amounts. The mean, median, and mode values of As++ are nearly equal; hence,
its distribution is observed under the standard or normal conditions. Dataset variation is
observed to be close to each other and this is evident by the standard deviation, which varies
from 0.0 to 0.07 in the respective experimental sites. The skewness and kurtosis curves are
platykurtic for almost all the experimental sites because of the low range variations.

Ca element variation in all the experimental sites is observed, meaning that the mean,
median, and mode values are largely dispersed, and abnormalities are found in a few
datasets. The high standard deviation suggests that the Ca levels are extremely discrete
and generally low values are observed. The curve between skewness and kurtosis is
not platykurtic and is positively skewed for almost all the sites. Ca normally shows
persistent behavior with the distribution of other elements, such as Cl−, TDS, alkalinity,
hardness, Mg, F−, SO4

2−, TDS, and turbidity, while the Fe2+ and pH parameters show
anti-persistent behavior.

The Mg element is observed to show normal variation except in the Kumaun region
(plane regions of the Uttarakhand). The dataset series for all the experimental sites are
found to be dispersive; hence, the skewness and kurtosis curves do not reflect normal
behavior. The average, median, and mode of Mg are under the standard range. The
standard deviation considerably indicates that the Mg values are widely dispersed. The
curve is platykurtic and it is positively skewed for all the experimental sites, except for
the Tehri Garhwal. In almost all the experimental sites, the Mg element shows a Brownian
time series (true random walk) with pH and alkalinity parameters. Mg exhibits persistent
behavior with turbidity, Cl−, NO3

−, Ca, TDS, hardness, F−, and SO4
2−, while it exhibits

anti-persistent activity with Fe2+ and As++.

4.5. The Findings from the Results

In this study, the analysis of the variations and distribution of the WQPs in 13 ex-
perimental sites are discussed with spatial variation in the WQP remote sensing and GIS
methods under different stress conditions.

In addition to this, the predictability analysis from the fractal approach in 13 experi-
mental sites is also evaluated. Skewness and kurtosis curves are implemented on each pa-
rameter of 13 experimental sites. In all 13 experimental sites (districts), the non-platykurtic
curve was observed in the water quality parameters to identify the comprehensive char-
acteristics of the water quality indices. The curve between skewness and kurtosis is not
symmetrical, as evidenced by the positive skewness among the series of data points. Kur-
tosis has shown large values, which indicate that the curve for datasets such as turbidity,
Cl−, Fe2+, Ca, and SO4

2− are platykurtic. For almost all the experimental sites, the NO3
−,

Ca, Mg, TDS, alkalinity, and hardness variation is in normal form as the high coefficient of
variation among each one is observed. In most of the WQIs in totality, Brownian time-series
behavior has been observed. In most of the experimental sites, F− exhibits Brownian time
series behavior, while Ca, Mg, Fe2+, and NO3

− exhibit persistent behavior, and turbidity,
Cl−, TDS, alkalinity, hardness, and SO4

2− exhibit anti-persistent behavior.
Turbidity, Cl−, NO3

−, F−, TDS, alkalinity and SO4
2− have a persistent nature with Fe,

Ca, Mg, and NO3
− for almost all the experimental sites, and all have a stable relationship

with the hardness of the water. When comparing Fe2+ with Cl−, TDS, alkalinity, and SO4
2−

parameters, an anti-persistent tendency can be observed. NO3
− has an anti-persistent

relationship with Ca, Mg, Fe2+, and pH, while with other factors, including turbidity, Cl−,
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TDS, alkalinity, hardness, SO4
2− has an anti-persistent performance. Mg has anti-persistent

behavior with only Fe2+, whereas Ca has anti-persistent activity with both Fe and pH
parameters in almost all the sites. With Fe2+, pH, Ca, and Mg, the parameters F−, alkalinity,
TDS, and SO4

2−possess an anti-persistence nature. The various indices show a consistent
pattern, indicating that the fluctuations in WQPs are within an adequate level of one
another. The fractal and statistical analysis were combinedly found to be a better approach
for calculating linkage among the water quality indices. The water samples were found to
be safe to drink and in healthy condition in almost all the districts of the state Uttarakhand,
except for the Haridwar district, where some increase in contaminants was observed.

The current proposed architecture enables us to identify the WQIs of every district
based on the ground data from the 13 districts of the Uttarakhand state. The proposed
architecture empowers us to confirm the water quality of every district. In addition to this,
IoT and ML-based framework was implemented to carry out the statistical multivariate
approaches using the RF model to find the correlation among the parameters. The broad
execution of this architecture in the future scope allows for the administration to recognize
which districts’ ground water quality is worsening, as well as to envision water quality data
in real time on a cloud server, enabling the administration to comply with the requirements
to purify the water before supplying it to the people. The calibrating of the many sensors,
as well as the availability of a few sensors with the technology for acquiring real-time data,
are the suggested architecture’s limitations.

5. Conclusions

Sustainable management and availability of water quality ensure the health of the
human beings associated with that region. This can be achieved with the integration of big
data, IoT and ML. In this study, a big data framework is proposed to find the correlation
between WQPs of 13 districts of the Uttarakhand state. In addition to this, IoT and ML-
based framework was implemented to carry out the statistical multivariate approaches
using an RF model. The variation in WQP is analyzed using an RF model, and the dataset
is segmented location wise and the mean, mode, standard deviation, median, kurtosis, and
skewness of time series datasets are examined. The means of the parameters are adjusted
with the coefficient of variation based on the standard values of each parameter. The
water samples were found to be safe to drink and in healthy condition in almost all the
districts of the state Uttarakhand, except for the Haridwar district, where some increase in
contaminants was observed.

Author Contributions: Conceptualization, S.K., A.T. and S.V.A.; methodology, R.S., A.G. and H.G.M.;
validation, D.A.; formal analysis, M.I. and I.D.N.; investigation, R.S. and A.G.; writing—original draft
preparation, S.K., A.T. and S.V.A.; writing—review and editing, D.A., M.I. and I.D.N.; supervision,
H.G.M. and D.A.; project administration, H.G.M. All authors have read and agreed to the published
version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022TR140), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022TR140), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clean Water and Sanitation Projects|SDG 6—UN India. Available online: https://in.one.un.org/page/sustainable-development-

goals/clean-water-sanitation-sdg-6/ (accessed on 28 May 2022).
2. Simonetti, V.C.; Frascareli, D.; Gontijo, E.S.J.; Melo, D.S.; Friese, K.; Silva, D.C.C.; Rosa, A.H. Water quality indices as a tool for

evaluating water quality and effects of land use in a tropical catchment. Int. J. River Basin Manag. 2021, 19, 157–168. [CrossRef]

https://in.one.un.org/page/sustainable-development-goals/clean-water-sanitation-sdg-6/
https://in.one.un.org/page/sustainable-development-goals/clean-water-sanitation-sdg-6/
http://doi.org/10.1080/15715124.2019.1672706


Electronics 2022, 11, 1927 34 of 35

3. Singh, H.; Singh, D.; Singh, S.K.; Shukla, D.N. Assessment of river water quality and ecological diversity through multivariate
statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India. Int. J. River Basin Manag. 2017, 15,
347–360. [CrossRef]

4. MacKenzie, R. Clearing the Waters over Hygiene Debate. Nurs. Times 2000, 96, 24.
5. Parmar, K.S.; Bhardwaj, R. Statistical, time series, and fractal analysis of full stretch of river Yamuna (India) for water quality

management. Environ. Sci. Pollut. Res. 2015, 22, 397–414. [CrossRef] [PubMed]
6. Wahl, D.; Ness, B.; Wamsler, C. Implementing the urban food–water–energy nexus through urban laboratories: A systematic

literature review. Sustain. Sci. 2021, 16, 663–676. [CrossRef]
7. El-Gafy, I. Water–food–energy nexus index: Analysis of water–energy–food nexus of crop’s production system applying the

indicators approach. Appl. Water Sci. 2017, 7, 2857–2868. [CrossRef]
8. Konapala, G.; Mishra, A. Quantifying climate and catchment control on hydrological drought in the continental United States.

Water Resour. Res. 2020, 56, e2018WR024620. [CrossRef]
9. Sharma, D.; Kansal, A. Water quality analysis of River Yamuna using water quality index in the national capital territory, India

(2000–2009). Appl. Water Sci. 2011, 1, 147–157. [CrossRef]
10. Ai, L.; Shi, Z.H.; Yin, W.; Huang, X. Spatial and seasonal patterns in stream water contamination across mountainous watersheds:

Linkage with landscape characteristics. J. Hydrol. 2015, 523, 398–408. [CrossRef]
11. Sinha, D.K.; Rastogi, G.K.; Kumar, R.; Kumar, N. Correlation study among water quality parameters an approach to water quality

management. J. Environ. Sci. Eng. 2009, 51, 111–114. [PubMed]
12. Jabbar, F.K. Assessment and Prediction of Surface Water Vulnerability from Non-Point Source Pollution in Midwestern Watersheds.

Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2019.
13. Alnahit, A.O.; Mishra, A.K.; Khan, A.A. Stream water quality prediction using boosted regression tree and random forest models.

Stoch. Environ. Res. Risk Assess. 2022, 4. [CrossRef]
14. Shen, L.Q.; Amatulli, G.; Sethi, T.; Raymond, P.; Domisch, S. Estimating nitrogen and phosphorus concentrations in streams and

rivers, within a machine learning framework. Sci. Data 2020, 7, 161. [CrossRef] [PubMed]
15. Bisht, H.; Kotlia, B.S.; Kumar, K.; Taloor, A.K.; Arya, P.C.; Sah, S.K.; Agnihotri, V.; Tewari, M.; Upadhyay, R. Hydrogeochemical

analysis and identification of solute sources in the meltwater of Chaturangi glacier, Garhwal Himalaya, India. Appl. Water Sci.
2022, 12, 29. [CrossRef]

16. Gajbhiye, S.; Sharma, S.K.; Awasthi, M.K. Application of Principal Components Analysis for Interpretation and Grouping of
Water Quality Parameters. Int. J. Hybrid Inf. Technol. 2015, 8, 89–96. [CrossRef]

17. Gad, A.; Ali, R.R.; El-zeiny, A. Negative impacts of man-made activities on water quality, Egypt. Natl. Authroity Remote Sens.
Space Sci. 2011, 1–20.

18. Lei, C.; Wagner, P.; Fohrer, N. Influences of land use changes on the dynamics of water quantity and quality in the German
lowland catchment of the Stör. Hydrol. Earth Syst. Sci. Discuss. 2022, 26, 2561–2582. [CrossRef]

19. Antolini, F.; Tate, E.; Dalzell, B.; Young, N.; Johnson, K.; Hawthorne, P.L. Flood Risk Reduction from Agricultural Best Management
Practices. J. Am. Water Resour. Assoc. 2020, 56, 161–179. [CrossRef]

20. Grazzini, F.; Craig, G.C.; Keil, C.; Antolini, G.; Pavan, V. Extreme precipitation events over northern Italy. Part I: A systematic
Cl-assification with machine-learning techniques. Q. J. R. Meteorol. Soc. 2020, 146, 69–85. [CrossRef]
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