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ARTICLE INFO ABSTRACT
Keywords: S-adenosylmethionine (SAM) is the main cellular methyl donor and a core product of one-carbon metabolism. Its
S-Adenosylmethionine balance with S-adenosylhomocysteine (SAH) defines methylation potential and shapes epigenetic and epitran-
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scriptomic outputs. RNA N®-methyladenosine (m®A) directly depends on SAM and is controlled by a writer-
reader-eraser system. This review summarizes how altered SAM supply, SAH accumulation, and shifts in the
SAM/SAH ratio can reprogram m®A landscapes. These changes can occur in cancer, metabolic disease,
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inflammation, and neurodegeneration. We integrate metabolic control of SAM generation and consumption with
regulation of METTL3/METTL14, WTAP and related cofactors, and the erasers FTO and ALKBH5. We also assess
plant-derived bioactive compounds proposed to act on this coupling. Most phytochemicals do not behave as
potent, selective m®A enzyme inhibitors. They more often act upstream by reshaping one-carbon metabolism,
redox state, and protein expression. This profile contrasts with canonical synthetic inhibitors that block a single
node with higher affinity and more predictable pharmacodynamics. Together, the evidence supports the SAM-
m®A axis as a practical framework to connect nutrient state with RNA fate decisions. It also highlights key gaps
for translation, including target engagement, dose-exposure alignment, and causal validation of m®A-dependent

phenotypes.

1. Introduction

S-adenosylmethionine (SAM) is the principal biological methyl
donor in eukaryotic cells and occupies a central position in one-carbon
metabolism [1]. It is synthesized from methionine and ATP through
the methionine cycle and serves as an essential substrate for a wide
range of methyltransferase reactions, including DNA, RNA, protein, and
lipid methylation [2]. The intracellular availability of SAM, together
with the SAM/S-adenosylhomocysteine (SAH) ratio, reflects cellular
methylation capacity and dynamically integrates nutritional status,
metabolic flux, and redox balance [3]. Consequently, fluctuations in
SAM homeostasis provide a direct metabolic input that can modulate
epigenetic and epitranscriptomic processes, including N®-methyl-
adenosine (m6A) RNA modification.

mPA is the most abundant internal modification in eukaryotic mRNA
and functions as a dynamic regulator of gene expression [4]. The effi-
ciency of m®A deposition largely depends on the availability of the
universal methyl donor SAM, which is synthesized from the methionine
cycle [5,6]. Therefore, the SAM-mPA axis integrates cellular nutritional
status and epitranscriptome regulation. When SAM production is
impaired, m®A levels decrease, leading to widespread alterations in RNA
stability, translation, and metabolic signaling. Conversely, excessive
SAM or aberrant m°A dynamics may promote oncogenic or inflamma-
tory pathways [7].

In parallel, nutritional epigenetics has highlighted that dietary
components and plant-derived bioactive compounds can modulate
epigenetic and epitranscriptomic regulation. Beyond classical vitamins
and methyl donors, many phytochemicals influence one-carbon meta-
bolism, SAM-consuming enzymes, or components of the m®A machin-
ery. Tea polyphenols, curcumin, tanshinone IIA, and related compounds
have been reported to alter SAM homeostasis, writer or eraser abun-
dance, and reader-dependent RNA decay or translation [8,9]. However,
existing studies are often fragmented, focusing on isolated molecules or
disease models, and a unifying mechanistic framework is still lacking.

Here, we propose the SAM-m®A axis as an integrative framework to
organize these findings. Rather than treating m°A regulation or plant
interventions as isolated phenomena, this review emphasizes how
metabolic control of SAM supply, writer activity, and downstream
reader selection collectively shape disease-relevant RNA programs. We
systematically summarize the molecular basis of SAM metabolism and
m®A machinery, analyze how plant-derived compounds engage this axis,
and compare their systems-level modulation with canonical small-
molecule inhibitors. We further integrate disease-specific evidence to
identify common patterns, dominant regulatory nodes, and translational
implications.

2. SAM biosynthesis and regulatory mechanisms
2.1. SAM metabolism and homeostasis

SAM is the most universal methyl donor in cells, participating in a
variety of methylation reactions, including DNA, RNA, proteins, lipids,

and small molecules. Its intracellular level is primarily maintained by
the methionine cycle and one-carbon metabolism [10,11]. The synthesis

reaction is catalyzed by methionine adenosyltransferase (MAT):
L-methionine + ATP — SAM + PPi + Pi [12]. In mammals, MAT1A is
primarily expressed in the liver, while MAT2A is widely distributed in
non-hepatic tissues. MAT2B is a regulatory subunit that regulates
MAT2A activity and SAM production (Fig. 1) [13,14].

Methionine (Met) in the body can be derived from dietary intake or
generated through remethylation of homocysteine (Hcy). There are two
primary pathways for its production. The first is the MTR pathway,
where folate and vitamin B12 react with methionine synthase to pro-
duce Met using 5-methyltetrahydrofolate (5-methyl-THF) as a methyl
donor. Furthermore, the betaine homocysteine methyltransferase
(BHMT) pathway produces Met using betaine as a methyl donor. These
two pathways work together to generate Met, which in turn regulates
SAM synthesis [15-18].In addition, methionine salvage can reuse
methylthioadenosine (MTA) produced by polyamine synthesis, further
stabilizing methionine synthesis [19,20].

SAM synthesis is also related to one-carbon metabolism. Serine/
glycine donate a single carbon unit to THF in the one-carbon pathway.
The resulting 5-methyl-THF participates in the MTR reaction. This
process is regulated by key enzymes such as serine hydroxymethyl-
transferase (SHMT) and methylenetetrahydrofolate dehydrogenase/
cyclase (MTHFD). It is closely linked to NAD(P)H and carbon-nitrogen
skeleton metabolism. Consequently, nutritional and stress conditions
dynamically influence the production of Met and SAM [21].

Elevated SAH represents a common epigenetic stress signal in
vascular disease because it reflects impaired SAH clearance and inhibi-
tion of methylation reactions. Studies using SAHH inhibition consis-
tently show that increased SAH promotes endothelial dysfunction and
accelerates atherosclerosis. A shared upstream mechanism is the
downregulation of DNMT1 and promoter hypomethylation of patho-
genic genes. However, the dominant downstream effect differs across
disease contexts. In vascular aging models, SAH induces endothelial
senescence mainly by upregulating DRP1, disrupting mitochondrial
dynamics, and promoting cellular aging phenotypes [22]. In
atherosclerosis-prone settings, SAH primarily enhances oxidative stress
and impairs nitric oxide bioavailability through epigenetic activation of
the p66shc pathway [23]. Both mechanisms are reversible by targeting
the respective downstream nodes, such as DRP1 inhibition or antioxi-
dant and p66shc suppression. Human data further support these findings
by linking plasma SAH levels to endothelial dysfunction and methyl-
ation changes. Together, these studies indicate that SAH-driven
methylation imbalance follows a shared epigenetic logic but manifests
through distinct effector pathways depending on vascular state and
disease stage.

SAM is also regulated by upstream signals. For example, mechanism
of rapamycin complex 1 (mTORC1) can promote the one-carbon cycle
and methionine remethylation by upregulating the expression of
MAT2A and one-carbon metabolism enzymes. This rapidly and signifi-
cantly increases intracellular SAM levels, providing substrates for
downstream RNA and histone methylation [24,25]. Concurrently, in
liver tissue, phosphoenolpyruvate carboxykinase 1 (PCK1) regulates
carbon cycling and chromatin methylation. PCK1 influences SAM syn-
thesis and histone modifications such as H3K9me3 [26].

In summary, Met synthesis, MAT2A/2B catalytic regulation, the one-
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carbon cycle, and the SAM/SAH ratio form the core mechanisms influ-
encing SAM levels. This pathway is regulated by both dietary factors
(Met, folate, vitamin B12, and betaine) and signaling pathways such as
mTORC1 and PCK1. SAM is the sole methyl donor for m®A modification
insertion, and this pathway provides the foundation for subsequent post-
transcriptional regulation mediated by the SAM-m°A axis [27].

2.2. SAM/SAH ratio and methylation potential

SAM-dependent methylation should be interpreted as a coupled
system rather than an isolated increase or decrease in SAM. The intra-
cellular SAM/SAH ratio integrates methyl-donor supply with product
inhibition and is therefore a practical proxy for methylation capacity
[28]. SAH is generated after methyl transfer and can inhibit multiple
methyltransferases. SAH accumulation can lower the SAM/SAH ratio
even when SAM is not limiting, and this shift is accompanied by reduced
methylation activity [29]. This balance is thus better viewed as a dy-
namic homeostatic variable than a static marker.

Nutritional state is a major driver of SAM/SAH dynamics. Dietary
methyl donors and co-factors modulate flux through one-carbon meta-
bolism and change both SAM synthesis and SAH clearance. Vitamin B12
deficiency reduces methionine synthase activity and decreases the SAM/
SAH ratio, which is linked to neurological dysfunction [30]. In contrast,
betaine supplementation can raise the SAM/SAH ratio and improve
metabolic outcomes, including liver-related phenotypes [31]. These
findings support a model in which SAM/SAH responds to nutrient
availability and can mediate downstream epigenetic outputs.

Tissue context further shapes how SAM/SAH varies and what it
predicts. The liver has high one-carbon turnover and can rapidly adjust
SAM/SAH across fasting-feeding transitions to match metabolic demand
[32]. In the nervous system, SAM/SAH balance is tightly linked to
neurodevelopmental and cognitive processes, and exogenous SAM has
been explored for depression and cognitive impairment, suggesting
functional sensitivity to methylation capacity in this tissue [33,34]. In
chronic kidney disease, urinary SAM/SAH has been proposed as a
non-invasive marker reflecting systemic methylation imbalance and
disease progression [35]. In cardiovascular disease, decreased SAM/-
SAH has been associated with higher atherosclerosis risk, and SAM
supplementation has been reported to improve vascular function [36].
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Together, these examples emphasize that SAM/SAH is not uniform
across the body and may change with stage, compartment, and disease
burden.

Overall, the SAM/SAH ratio is best positioned as a context-
dependent indicator that links nutrition, tissue metabolism, and meth-
yltransferase activity. Its interpretation should therefore consider tissue
type, nutritional status, and disease stage, rather than assuming a fixed
relationship with methylation output.

3. Mechanistic basis of the SAM-m°A axis

The SAM-m°®A axis is a complete system from metabolism to epige-
netics. The intracellular supply level of SAM and its balance with SAH
serve as upstream metabolic inputs. Based on this metabolic input, m°A
writers (such as the METTL3/METTL14/WTAP complex and METTL16),
demethylases (such as FTO and ALKBH5), and readers (such as the YTH
family and IGF2BP family) reshape the m®A modification map at specific
transcripts and sites [31]. Changes in this modification map further in-
fluence key RNA fate decisions, including splicing and processing, and
nuclear export, ultimately being translated into differences in cellular
functional reprogramming and disease-related phenotypes.

3.1. SAM as the core regulator of m°A modification

SAM is the sole methyl donor for m®A modification. SAM directly
determines the efficiency and extent of m®A insertion. m®A modification
is catalyzed by the multicomponent methyltransferase complex (MTC).
METTL3 is responsible for binding to SAM and catalyzing methyl
transfer. METTL14 is responsible for substrate recognition, while WTAP
and VIRMA assist in localization. Furthermore, METTL16, ZCCHC4, and
METTL5 can independently catalyze m®A modification of specific RNAs
[37,38]. SAM binding is an essential step in the active reactions of these
enzymes, and SAM levels and availability play a central role in regu-
lating mPA modification (Fig. 2).

Low SAM levels lead to a global decrease in m®A modification. It has
been reported that when cells are in a low methyl donor state, the m°A
content of RNA decreases significantly. This decrease in m°®A content
inhibits post-transcriptional effects of transcripts and promotes
abnormal cell proliferation [39,40]. This result suggests that SAM
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deficiency impairs methylation modification capacity. SAM deficiency
can also affect the fate of key gene transcripts and promote disease
development.

High levels of SAM can amplify m®A signals. In response to nutrient
abundance or activated signaling pathways, MAT2A expression is
upregulated. This leads to increased intracellular SAM levels, which in
turn enhances global mA modification [41]. For example, mTORC1
promotes SAM elevation, triggering mA reprogramming in NK cells. This
improves the mRNA stability and translation efficiency of target factors,
which in turn enhances immune function [42]. This suggests that
changes in SAM are closely linked to metabolic status and immune
responses.

The SAM/SAH ratio is closely related to the efficiency of m°A
modification. The SAM/SAH ratio reflects the methylation capacity of
cells. SAH accumulation competitively inhibits the activity of writer
enzymes such as METTL3/14, which reduces the efficiency of m°A
modification [9]. Clinical and animal studies have shown that increasing
the SAM/SAH ratio can enhance m®A modification. Supplementing with
betaine or alleviating the inhibitory effects of S-adenosylhomocysteine
hydrolase (SAHH) can improve neurological function [9].

An imbalance in the SAM-m°®A axis can also play a significant role in
disease development. Arsenic exposure depletes SAM through As3MT,
leading to decreased m®A levels. This blocks miRNA maturation and
induces NAFLD [43]. Similarly, vitamin B12 deficiency reduces SAM
levels. This reduced SAM level leads to abnormal m®A modification of
neural genes, resulting in neurodevelopmental and cognitive deficits
[44]. These findings suggest that an imbalance in the SAM-m°A axis can
contribute to disease.

SAM influences m®A modification by influencing writer enzymes.
Furthermore, the SAM/SAH ratio can regulate methylation potential. In
disease, the SAM-mPA axis is imbalanced. Results indicate that SAM is
not only a metabolic intermediate but also a rate-limiting factor in m°A
modification. Its content changes connect metabolism and epigenetic
interactions.

3.2. Upstream signaling and the MAT2A-SAM-m°A pathway

This section summarizes how different upstream signals influence
the MAT2A-SAM-mPA axis.

Phosphoribosyl pyrophosphate synthetase (PRPS) is the rate-limiting
enzyme in the purine biosynthesis pathway, catalyzing the production of
PRPP. PRPP is a key substrate for the synthesis of purines and pyrimi-
dines. It is also a key substrate for the synthesis of coenzymes such as

NAD and NADP [45]. PRPS regulates the MAT2A-SAM-mPA axis. PRPS
promotes ATP production, regulates MAT2A, and leads to an increase in
SAM [41]. MAT2A connects the signal input to the m®A modification.

The mTORCI signaling pathway is an important regulator of meta-
bolic adaptations in response to nutritional changes [46]. The
mTORC1-MYC pathway rapidly upregulates MAT2A. This pathway also
increases the levels of one-carbon enzymes such as SHMT and MTHFD.
This enhances remethylation, promotes SAM production, and increases
the SAM/SAH ratio.

In NK cells, mTORC1 activation elevates MAT2A and SAM levels.
Subsequently, m®A rapidly reprograms. The stability and translation
efficiency of target factor mRNAs increase. Inhibiting mTORC1 activity
or downregulating MAT2A levels reverses these changes [42].

Similar findings have been observed in tumors. mTORC1 activation
promotes one-carbon cycling and SAM production. METTL3 stabilizes
the oncogenic transcript NR4A2. Similarly, upregulation of SHMT2 and
MTHFD2 maintains one-carbon metabolism, promoting rapid prolifer-
ation and immune evasion. Furthermore, PRPS2 promotes SAM pro-
duction by upregulating ATP and stabilizing MAT2A. It also amplifies
m°A through WTAP/METTL3/METTL14 [47,48].

This pathway has a clear temporal sequence. First, SAM and SAM/
SAH levels rise, followed by m®A enhancement and site redistribution,
and finally, conversion into functional output by readers such as YTH/
IGF2BP. This pathway also has a limiting mechanism, the METTL16-
MAT2A pathway [49]. Excessive SAM levels restrict MAT2A; low SAM
levels promote its splicing and stabilization. Thus, the pathway strikes a
balance between amplification and restriction, maintaining rapidity and
reversibility.

3.3. METTL16-mediated SAM feedback regulation

Unlike the rapid mTORC1-MAT2A-SAM-m°A reaction, a feedback
loop centered on METTL16 maintains SAM stability. METTL16 recog-
nizes an adenine-containing hairpin structure in the 3’UTR of pre-mRNA
and can also target other structured RNA sites, such as U6 snRNA.
Furthermore, its methyltransferase activity uses SAM as a substrate and
is modulated by SAM levels. METTL16 functions as both a trans-
membrane enzyme and a metabolic sensor [38,50]. When SAM is low,
METTL16 binds to the MAT2A 3’UTR hairpin, promoting terminal
intron splicing and stabilizing the MAT2A transcript. This leads to a
rebound in MAT2A protein and SAM production. When SAM is high,
METTL16’s methyltransferase activity is enhanced. It inhibits MAT2A
expression through both methylation at specific sites and direct binding.
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This prevents excessive accumulation of methyl donors, forming a
negative feedback loop that maintains SAM homeostasis [50,51].

This has physiological and pathological implications. Under low
SAM levels, knockdown or inactivation of METTL16 leads to a block in
MAT2A splicing and a further decrease in SAM. This can trigger an
imbalance in posttranscriptional processes, such as m°A readout and
writeout. This phenomenon can be alleviated by exogenous methionine
supplementation or by enhancing remethylation capacity [52]. In
diffuse midline glioma (DMG, H3K27M), upregulation of AMD1 leads to
abnormal accumulation of dcSAM, interfering with METTL16’s regula-
tion of SAM splicing. Inhibition of METTL16 significantly suppresses
tumor cell growth and survival [53]. In conditions of vitamin B12
deficiency or inadequate one-carbon metabolism, the METTL16-MAT2A
circuit can mitigate the epigenetic and posttranscriptional abnormalities
caused by SAM fluctuations.

4. m°®A writer enzymes and the write-read-erase system

In RNA epitranscriptomic regulation, writers are methyltransferases
that install m®A and thereby generate the modification signal. METTL16
shows preference for structured RNA substrates. CAPAM deposits m°A at
the mRNA cap. ZCCHC4 and METTL5 modify 28S rRNA and 18S rRNA,
respectively. Readers, including YTH-domain proteins and IGF2BPs,
bind m®A -marked RNAs and modulate RNA stability, splicing, and
translation. Erasers, such as FTO and ALKBHS5, remove m°A and enable
reversibility [54,55]. Together, writers, readers, and erasers form a co-
ordinated regulatory system. In metabolic-epitranscriptomic coupling,
writers often act as the main entry point because their catalytic activity
depends on methyl-donor availability and sets the substrate for down-
stream decoding by readers.

4.1. Structure and function of the METTL3/METTL14 complex

It uses SAM as the methyl donor and catalyzes methyl transfer at
specific RNA sites. METTL3 and METTL14 form a stable heterodimer
that creates the catalytic pocket. In this pocket, the target adenine is
positioned for methyl transfer from SAM, with SAH generated as the
product [56].

Structural studies show that the methyltransferase domain of
METTL3 adopts a Rossmann-like fold. METTL3 contains a conserved
SAM-binding pocket and catalytic motifs that support SAM binding and
methyl transfer chemistry [57]. METTL14 is a structural homolog of
METTL3. It lacks key catalytic residues and has little or no intrinsic
methyl transfer activity. Its main role is to support RNA binding and
substrate positioning. METTL14 provides a positively charged
nucleic-acid-binding surface that stabilizes RNA substrates and pro-
motes productive loading. Through this scaffold function, METTL14
improves both efficiency and site selectivity of m®A deposition [58-60].

At the sequence level, m®A sites show preference for the DRACH
consensus motif, and they are enriched near stop codons and within 3’
untranslated regions [61,62]. Site selection is further refined by auxil-
iary proteins. WTAP promotes complex assembly and localizes the
writer machinery to nuclear speckles. VIRMA biases m®A deposition
toward the 3’ end of transcripts and contributes to the typical
3’-enriched distribution. RBM15 and RBM15B, together with ZC3H13,
help recruit the writer complex to specific RNA regions, including
IncRNA-associated sites and intron-proximal regions. HAKAI contributes
to complex stability and appropriate subcellular localization [63,64].
These cofactors help convert basic sequence preference into
context-dependent site selection, which can differ across cell types and
stimulation conditions.

Writer activity is also constrained by cellular methylation potential.
METTL3-METTL14 requires SAM during catalysis, and its effective ac-
tivity depends on local SAM availability. SAH, the reaction product, can
inhibit SAM-dependent methyltransferases. The SAM to SAH ratio is
therefore a more informative indicator of methylation potential than
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SAM abundance alone [65-67]. When methylation potential is high,
writer reactions can proceed more efficiently. When SAH accumulates,
product inhibition can limit reaction throughput. This metabolic control
provides a direct route by which changes in one-carbon metabolism can
reshape m®A writing capacity. In this context, MAT2A is an important
node because it controls SAM synthesis and can therefore influence m°A
output through substrate supply.

Structural knowledge has also enabled rational inhibition of the
writer complex. A targeted peptide inhibitor, RSM3, was designed to
bind METTL3 and block its transmethylase activity. RSM3 showed
anticancer efficacy in a PC3 prostate cancer xenograft model, supporting
METTL3 as a druggable target [68]. In addition, small molecules can
occupy the SAM-binding pocket of METTL3. Competitive SAM-site in-
hibitors have shown in vivo activity in hematopoietic tumor models,
which demonstrates a feasible strategy to modulate m®A by targeting the
substrate-binding site [69].

Overall, METTL3 provides the catalytic core that binds SAM and
transfers the methyl group. METTL14 primarily supports RNA recogni-
tion and substrate positioning. Auxiliary factors regulate assembly,
recruitment, and nuclear localization, and they shape context-specific
site selection. Metabolic state, reflected by SAM availability and SAH-
mediated product inhibition, further sets the efficiency range of m°A
writing by this complex [56,57].

4.2. Structure and function of the METTL16

METTL16 is an m®A writer with dual properties as an RNA methyl-
transferase and a metabolic sensor. Its N-terminus features a typical
Rossmann-like methyltransferase fold, catalyzing the transfer of methyl
groups from SAM to SAH. A conserved RNA-binding region (VCR) at the
C-terminus mediates recognition of a specific hairpin structure. This
allows METTL16 to specifically target structured RNAs, such as the A
site of U6 snRNA. It also recognizes mRNA elements with similar sec-
ondary structures, such as the MAT2A 3’UTR hairpin [70,71]. METTL16
methylates U6 snRNA stably and participates in spliceosome mainte-
nance. Its regulation of MAT2A exhibits both sensing and execution
characteristics. Specifically, METTL16’s RNA binding ability, catalytic
activity, and nuclear localization dynamically change with SAM levels
[51].

When SAM levels decrease, METTL16 preferentially binds to the
MAT2A 3’UTR hairpin. This promotes terminal intron splicing and en-
hances transcript stability, thereby upregulating MAT2A protein levels
and restoring SAM synthesis. When SAM levels increase, METTL16
displays higher catalytic activity and inhibits MAT2A splicing and
expression at specific sites. This regulation prevents excessive SAM
accumulation, forming a negative feedback loop of SAM/METTL16/
MAT2A [72,73].

Overall, METTL16 translates changes in SAM levels into bidirec-
tional regulation of MAT2A splicing and expression. Concurrently, it
catalyzes the relatively stable m®A modification on U6 snRNA to support
the structural and functional maintenance of the spliceosome.

4.3. m°A erasers: dynamic counterbalance within the SAM-mCPA axis

mP®A methylation is a reversible RNA modification. Its dynamic na-
ture depends not only on methyltransferase writers, but also on dedi-
cated demethylases, referred to as erasers. Among them, fat mass and
obesity-associated protein (FTO) and ALKBH5 are the two best-
characterized m°A erasers [55]. Together, they provide a counterbal-
ance to writer-mediated methylation and enable rapid remodeling of
RNA fate in response to metabolic and environmental cues.

FTO was the first identified m®A demethylase and primarily targets
m®A and m®A m residues in mRNA. Structural studies indicate that FTO
belongs to the Fe(Il)/a-ketoglutarate-dependent dioxygenase family,
linking its catalytic activity to cellular metabolic state. Functionally,
FTO-mediated demethylation often increases mRNA stability or
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translation by removing m®A marks recognized by decay-promoting
readers such as YTHDF2 [74]. As a result, FTO activity can shift tran-
script output toward persistence and protein accumulation.

ALKBHS shares structural similarity with FTO but exhibits distinct
substrate preference and biological roles. ALKBH5-mediated demethy-
lation mainly affects mRNA export, splicing, and RNA stability, and its
activity is frequently linked to nuclear RNA processing [75]. Compared
with FTO, ALKBHS5 is more tightly associated with transcriptional and
post-transcriptional coordination rather than metabolic sensing per se.

Within the SAM-mPA axis, erasers do not operate independently of
methyl donor metabolism. Writer activity requires SAM and is inhibited
by SAH, whereas eraser activity determines how long a deposited mSA
mark persists on a given transcript [76]. When SAM availability is high,
increased writer activity can elevate global or transcript-specific m°A
levels, thereby increasing the substrate load for erasers. Conversely,
when SAM is limited, reduced writer output amplifies the relative
impact of eraser-mediated demethylation [77,78]. In this context,
erasers function as amplifiers or dampeners of methylation potential
rather than primary drivers.

Disease studies illustrate this complementary relationship. In meta-
bolic disorders, elevated FTO expression promotes lipogenesis by
demethylating transcripts such as SREBP-lc and ChREBP, thereby
enhancing their stability and translation [79]. In contrast,
ALKBH5-mediated demethylation can restore autophagic flux and
reduce lipid accumulation by targeting transcripts involved in vesicle
trafficking. These outcomes depend on the balance between
writer-driven deposition and eraser-driven removal of m®A marks,
rather than on either component alone.

Importantly, many plant-derived compounds discussed later in this

Plant Compounds Inputs
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review influence erasers indirectly. Polyphenols such as EGCG and
curcumin have been reported to reduce FTO protein abundance or ac-
tivity, thereby shifting the effective balance toward higher m°A levels
without directly inhibiting writer enzymes [80,81]. This mode of action
differs fundamentally from canonical small-molecule writer inhibitors
and highlights the systems-level modulation characteristic of
phytochemicals.

Taken together, m®A erasers provide a critical dynamic layer within
the SAM-m°A axis. Writers determine where and when methylation is
installed under metabolic constraints, whereas erasers control the
persistence and functional impact of these marks. Integrating erasers
into the conceptual framework is therefore essential for understanding
how metabolic state, dietary inputs, and disease signals collectively
shape RNA fate.

5. Plant compounds targeting the SAM-m°®A regulatory axis

Nutritional epigenetics offers a mechanistic framework for gene-diet
interactions. It highlights that diet can shape gene regulation through
chemical modifications at multiple layers. Canonical epigenetic regu-
lation includes DNA methylation and histone post-translational modi-
fications [82]. One-carbon metabolism is a central determinant of
cellular methylation capacity. Nutrients such as folate, vitamins B12 and
B6, riboflavin, methionine, choline, and betaine regulate the abundance
of S-adenosylmethionine and S-adenosylhomocysteine. The SAM/SAH
ratio is widely used as a proxy for methylation potential. In addition to
essential nutrients, many phytochemicals have been proposed to
reshape methylation landscapes. They may alter SAM/SAH balance or
modulate methylation-related enzymes. These concepts provide a
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rationale to discuss phytochemicals within the SAM-m°A axis. This axis
links methyl-donor metabolism to RNA fate control. It therefore con-
nects metabolic state to post-transcriptional regulation (Fig. 3 and
Table 1).

5.1. Betaine

Betaine is a compound that is naturally found in plants such as sugar
beets. In Hey-induced cognitive impairment models, betaine improved
behavior and reduced microglial activation [83]. Yang et al. supple-
mented betaine at 2.5 % (w/v) in drinking water for 14 days in rats
challenged with homocysteine (400 pg/kg/day). This regimen was
estimated to provide 2000-2500 mg/kg body weight. In vitro, HMC3
microglial cells were pretreated with 10 mM betaine for 4 h before ho-
mocysteine exposure. It inhibited inflammasome activation and
pyroptosis-related signaling. Importantly, betaine increased the SAM/-
SAH ratio and enhanced m®A enrichment on NLRP3 mRNA. YTHDF2
was implicated in the destabilization of NLRP3 transcripts, and YTHDF2
knockdown weakened the protective effect [84]. This work provides a
relatively complete multi-layer chain linking methyl-donor status, m®A
remodeling, and inflammatory outcomes.

Folate supplementation also supports axis coupling in drug-induced
liver injury. In isoniazid-induced hepatotoxicity, folate reduced liver
injury and downregulated CYP2E1 expression. In the study by Jiang
et al., folic acid was administered through the diet. Mice received an
AIN-93M diet supplemented with 0.66 g/kg isoniazid, while the inter-
vention group received an additional 0.01 g/kg folic acid for 72 days. It
increased m®A modification on Cyp2el transcripts and raised the SAM/
SAH ratio, supporting coordination between methylation potential and
transcript-level m®A changes [85]. In contrast, several NAFLD studies on
betaine report improvements in hepatic lipid metabolism with changes
in m®A regulators or m®A landscapes. In addition, in a high-fat diet
(HFD) mouse model of hepatic steatosis, betaine was provided in
drinking water at 2 % (w/v) for 17 weeks. In AML12 hepatocytes, lipid
loading was induced by oleic acid (200 pM) and palmitic acid (100 pM),
and betaine was applied at 2 mM. These defined regimens were used to
link betaine to altered hepatic m®A methylation profiles and reduced
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lipid accumulation, with Trub2 identified as an m®A-associated target
[94].

Bone-related studies provide additional support for the functional
relevance of the SAM-mPA axis. In BMSC osteogenesis, inhibition of one-
carbon metabolism reduced SAM production, lowered global m°®A
levels, and impaired osteogenic differentiation. Methotrexate (2 pM)
was used to inhibit one-carbon metabolism, and betaine (2 mM) was
used as a methyl donor. m®A methylation was inhibited by S-adeno-
sylhomocysteine (2 pM), and HIF-1a was modulated by dimethyloxalyl
glycine (0.1 mM). In rats, methotrexate was administered at 0.75 mg/
kg/day for 5 days, and betaine was injected intraperitoneally at 1 mg/
kg/day for 9 days. Betaine restored SAM and m®A and rescued osteo-
genesis. SAH reduced m®A and impaired osteogenesis, supporting the
requirement of methylation reactions for differentiation. In vivo data
further indicated that betaine mitigated MTX-induced bone loss [86]. In
inflammatory bone disease models, inflammatory stress was induced
with lipopolysaccharide at 1 pg/mL. Spermidine was applied at 1 pM,
while m®A methylation was inhibited using S-adenosylhomocysteine at
5 uM. Betaine was used as a methyl donor at 2 mM, and autophagy was
modulated with rapamycin at 100 nM. Spermidine increased SAM
abundance, elevated METTL3 and METTL14 expression, increased m°A
levels, and promoted osteogenesis. SAH impaired these effects. Auto-
phagy modulation contributed to phenotype execution, and in vivo
regeneration data supported translational potential [87]. Similar logic
was reported in BRONJ models, where betaine restored SAM, m®A, and
osteogenic capacity and improved lesions in vivo [88].

5.2. Tea polyphenols

Green tea, a member of the Theaceae family, is widely recognized for
its diverse pharmacological properties. It is particularly rich in poly-
phenols, especially catechins such as epicatechin (EC), epigallocatechin
(EGQ), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG).
Among these, EGCG is the predominant catechin and has been exten-
sively reported to exert multiple bioactivities, including antioxidant,
anti-inflammatory, antidiabetic, anti-obesity, and antitumor effects
[95]. Tea catechins may also influence methylation capacity through

Table 1
Phytochemicals regulating the SAM-m®A methylation axis.
Pathology Model Key Target Signaling Cascade Main Outcome Reference
Component
Cognitive Betaine NLRP3, 1 SAM/SAH ratio — 1 m°A on NLRP3 mRNA — YTHDF2- Inhibited inflammasome activation and [83,84]
Impairment YTHDF2 mediated transcript destabilization. pyroptosis; improved behavior.
Drug-induced Liver Folate CYP2E1 1 SAM/SAH ratio — 1 m°A on Cyp2el transcripts. Reduced liver injury; downregulated [85]
Injury CYP2E1 expression.
Bone Loss / Betaine SAM Restores SAM production — Restores global m°A levels ~ Rescued osteogenic differentiation; [86]
Osteogenesis Biosynthesis (reverses inhibition of 1-carbon metabolism). mitigated bone loss.
Inflammatory Bone Spermidine METTL3, 1 SAM abundance — 1 METTL3/14 expression — 1 m°A  Promoted osteogenesis and regeneration. [87]
Disease METTL14 levels — Autophagy modulation.
BRONJ Betaine SAM / m°A Restores SAM levels and downstream m°A modification. ~ Improved jaw lesions; restored osteogenic [88]
capacity.
Adipogenesis EGCG FTO, YTHDF2 | FTO, 1 YTHDF2 — 1 m®A on CCNA2 & CDK2 — Inhibited mitotic clonal expansion; anti- [80]
Decreased protein abundance. adipogenic effects.
p-cell Injury EGCG FTO Promotes FTO degradation (ubiquitin-proteasome) — Reduced p-cell injury; suppressed excessive [89]
Restores m°A on TIr4, Rela, Src — | Oxidative stress. autophagy.
Hepatic Fibrosis Curcumin MAT2B | p38 MAPK — | MAT2B expression — Reduced SAM Suppressed fibrotic activation of hepatic [90]
biosynthetic capacity. stellate cells.
NAFLD Curcumin FTO, PPAR« | FTO — t m°A on PPARa mRNA — Activates PPARa/ Reduced hepatic steatosis; promoted fatty [81]
CPT1a pathway. acid oxidation.
Rheumatoid Artemisitene METTL3, 1 p300/PI3K/AKT axis — | METTL3 — | m°A on ICAM2  Suppressed synovial proliferation and [91]
Arthritis ICAM2 mRNA. invasion; improved arthritis.
Bladder Cancer Tanshinone FDX1 1 m°A enrichment on FDX1 — 1 FDX1 expression — Induced cuproptosis; inhibited tumor [9]
1A Copper-dependent cell death. growth.
Atherosclerosis Leonurine METTL3, Regulates METTL3 — Modulates m°A on autophagy- Reduced plaque burden; enhanced [92]
AKT1S1 related transcripts (AKT1S1). macrophage autophagy; | lipid
accumulation.
Cardiac Maslinic Acid METTL3 Suppresses METTL3 expression — | Global m°A levels. Attenuated cardiac remodeling and [93]
Hypertrophy hypertrophic growth.
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SAM-consuming methyltransferases. Human hepatic COMT represents a
relevant SAM-dependent methylation sink. Structure-activity studies
showed that galloylated catechins are potent COMT inhibitors. EGCG
was the most potent inhibitor, with ICso values of 0.07-0.08 puM, fol-
lowed by ECG (0.20-0.30 pM). In contrast, non-gallated catechins such
as EGC and EC were markedly less active, with ICso values in the tens of
micromolar range. EGCG and methylated EGCG metabolites inhibited
COMT at submicromolar concentrations, whereas catechins lacking the
galloyl D-ring were markedly weaker. Kinetic analyses suggested that
certain methylated EGCG forms display competitive features toward the
SAM-binding site. Molecular modeling supported the contribution of the
galloyl moiety to binding within the catalytic pocket [96]. These data
provide a quantitative basis for the hypothesis that catechins can
modulate  methylation flux by inhibiting SAM-dependent
methyltransferases.

Green tea catechins provide some of the most direct evidence that a
dietary polyphenol can modulate m®A machinery and alter metabolic
phenotypes. In 3T3-L1 preadipocytes, EGCG increased global RNA m®A
levels, as quantified by HPLC-QqQ-MS/MS. EGCG also decreased FTO
protein abundance and increased YTHDF2 expression. During early
differentiation, EGCG increased mP®A enrichment on CCNA2 and CDK2
transcripts, as assessed by meRIP-qPCR. This was accompanied by
reduced CCNA2 and CDK2 protein levels and impaired mitotic clonal
expansion. Functional rescue experiments supported the involvement of
the FTO and YTHDF2 nodes. FTO overexpression or YTHDF2 knock-
down partially reversed the anti-adipogenic effects of EGCG and
restored CCNA2/CDK2 protein abundance [80]. These results support
an m®A-dependent mechanism for EGCG in adipogenesis.

EGCG has also been linked to f-cell protection through regulation of
FTO in models of glucocorticoid receptor-driven stress. Shao et al.
administered EGCG at 50 mg/kg by daily oral gavage for 10 weeks in
mice, with PBS as the vehicle control. In vitro, EGCG was mainly used at
50 pM for 2-48 h in cell and human islet assays. In p-cell specific NR3C1
overexpression mice and in vitro B-cell systems with enhanced NR3C1
signaling, EGCG reduced f-cell injury and suppressed excessive auto-
phagy. Mechanistic experiments indicated that FTO promoted oxidative
stress and autophagy by lowering m®A on transcripts including Tlr4,
Rela, and Src. EGCG promoted FTO degradation through the ubiquitin-
proteasome pathway. This was associated with restoration of m®A on
these transcripts and attenuation of oxidative stress. FTO overexpression
abolished the protective effect of EGCG, supporting a causal role for FTO
in this setting [89].

5.3. Curcumin

Curcumin, a natural polyphenol from Curcuma longa, exhibits broad
pharmacological activities including antioxidant, anti-inflammatory,
metabolic, and anticancer effects [97]. Curcumin also targets SAM
supply machinery in fibrotic settings. Curcumin was administered at
400 mg/kg/day by oral gavage for 4 weeks in a thioacetamide-induced
liver fibrosis mouse model. In hepatic stellate cells, curcumin was
mainly used at 20 pM for 24 h to suppress MAT2B expression and p38
MAPK signaling. MATII activity depends on MAT2A and its regulatory
subunit MAT2B. MAT2B supports stellate cell activation. Curcumin
suppressed MAT2B expression through inhibition of p38 MAPK
signaling and reduced fibrotic activation in vitro and in vivo [90]. This
evidence supports regulation of SAM biosynthetic capacity by a
phytochemical.

Curcumin has been proposed to regulate lipid metabolism through
m®A demethylation pathways in NAFLD models. In a high-fat diet-
induced NAFLD mouse model, curcumin was administered by oral
gavage at 200 mg/kg/day for 4 weeks. In vitro, hepatocytes exposed to
free fatty acids were treated with curcumin at 20-40 pM for 24 h. Cur-
cumin reduced hepatic steatosis and decreased FTO protein abundance.
Similar effects were observed in FFA-induced steatotic HepG2 and
THLE-2 cells. Target engagement was supported by docking analyses
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and cellular thermal shift assays. Curcumin increased m®A modification
on PPARa mRNA and activated the PPARa/CPT1la pathway, which
promotes fatty acid oxidation [81]. This study provides a relatively
coherent chain from phenotype to m®A regulator and a defined meta-
bolic effector pathway.

5.4. Artemisia sesquiterpenoids

Artemisitene is a natural sesquiterpene-derived compound from
Artemisia annua that exhibits notable anti-inflammatory, immuno-
modulatory, and disease-modifying activities [98]. Artemisitene has
been reported to suppress rheumatoid arthritis phenotypes by targeting
m°®A writing pathways. Artemisitene was administered intraperitoneally
at 10 mg/kg/day in a collagen-induced arthritis mouse model, while
fibroblast-like synoviocytes were treated in vitro with 1-5 pM artemi-
sitene for 24 h to modulate METTL3-dependent m°A methylation.
Artemisitene improved clinical and pathological outcomes. In RA
fibroblast-like synoviocytes, it inhibited proliferation and invasive
behavior and induced apoptosis. Transcriptomic analyses identified
ICAM2 as a critical pathogenic factor. Artemisitene reduced
METTL3-dependent mP®A modification of ICAM2 mRNA and attenuated
ICAM2-driven signaling through the PI3K/AKT/p300 axis. The study
also indicated that p300 promotes METTL3 transcription and that
artemisitene interferes with this regulatory loop. Patient synovial tissue
data supported associations between METTL3, ICAM2, and p300 and
clinical features [91]. These findings provide a disease-relevant example
of writer-centered regulation by a plant-derived compound.

5.5. Salvia diterpenoids

Tanshinone IIA is a lipophilic diterpene quinone isolated from Salvia
miltiorrhiza and is known for its cardiovascular, anti-inflammatory,
antioxidant, and anticancer activities [99]. Tanshinone IIA provides
evidence that a plant-derived compound can promote an m®A-depend-
ent cell death program in cancer. In bladder cancer models, Tanshinone
ITA was applied to bladder cancer cells at 0.25-4 pg/mL for 12-48 h.
Mechanistic assays mainly used 1 pg/mL Tanshinone IIA for 48 h.
S-adenosylhomocysteine was used at 1 pM to inhibit METTL3/METTL14
activity. In vivo, Tanshinone IIA was administered intraperitoneally at
1 mg/kg for 3 weeks in a xenograft model. Tanshinone IIA induced
copper-dependent cell death and increased expression of
cuproptosis-associated regulators, including FDX1. It increased m°A
enrichment on FDX1 transcripts and promoted FDX1 expression. SAH
attenuated these effects, consistent with suppression of
methyltransferase-dependent reactions. Functional experiments showed
that FDX1 knockdown reduced cuproptosis induction. Reader involve-
ment and 3'UTR reporter assays supported m6A—dependent
post-transcriptional regulation. In xenograft models, SAH affected the
antitumor efficacy of tanshinone IIA, indicating functional dependence
on methylation processes [9]. This study is notable because it pharma-
cologically links m®A writing to methylation inhibitory conditions.

5.6. Alkaloids and Triterpenoids

Leonurine is a bioactive alkaloid isolated from Leonurus japonicus
with reported cardioprotective, anti-inflammatory, antioxidant, and
metabolic regulatory effects [100]. Leonurine has been proposed to
ameliorate atherosclerosis by regulating METTL3 and autophagy in
macrophages. In an ApoE"/~ mouse model of atherosclerosis, leonurine
was administered at 30 or 60 mg/kg/day during high-fat diet feeding,
while in vitro experiments used 25-100 pM leonurine to treat
ox-LDL-induced macrophage-derived foam cells, with the most robust
effects observed at 100 pM. Leonurine reduced plaque burden and
inflammation. In ox-LDL-stimulated macrophage models, it reduced
lipid accumulation and enhanced autophagy. m®A-seq suggested
changes in m®A patterns on autophagy-related transcripts, and AKT1S1
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was highlighted as a candidate mediator. Genetic perturbation sup-
ported a role for AKT1S1 in autophagy induction and lipid handling
[92]. These data support a link between a natural product and
writer-centered m®A regulation in cardiovascular pathology.

Maslinic acid is a natural pentacyclic triterpenoid widely found in
olives and other edible plants, and it exhibits antioxidant, anti-
inflammatory, cardioprotective, and metabolic regulatory activities
[101]. Maslinic acid has been reported to attenuate cardiac hypertrophy
through METTL3-associated m®A regulation. In Ang-II-stimulated
neonatal cardiomyocytes, maslinic acid suppressed hypertrophic
growth. Maslinic acid inhibited Ang II-induced cardiomyocyte hyper-
trophy at 10-10 * pg/mL in vitro. In vivo, it was injected intraperito-
neally at 30 mg/kg/day in TAC mice. In TAC-induced hypertrophy
models, it reduced cardiac remodeling. The study reported reduced
global m®A levels and decreased METTL3 expression. METTL3 over-
expression weakened the protective effect, supporting a functional role
for METTL3 in this context [93].

Overall, current evidence suggests that plant-derived compounds can
influence the SAM-m°®A axis through two principal routes. One route
involves direct modulation of m®A machinery, including writers,
erasers, and readers. The other route involves modulation of methyl-
ation capacity through SAM synthesis pathways or SAM-consuming
methyltransferases. The strongest mechanistic support emerges when
SAM/SAH and m®A outcomes are measured together and combined with
functional perturbation of key m®A regulators. Such integrated designs
remain limited for most phytochemicals. Future studies should prioritize
simultaneous quantification of methyl-donor status, transcript-resolved
m°A profiling, and causal validation in disease-relevant tissues.

Plant-derived compounds should be interpreted in parallel with ca-
nonical small-molecule inhibitors of the SAM-m®A machinery. Synthetic
agents such as the METTL3 inhibitor STM2457 are designed to act as
high-affinity, single-node blockers that directly suppress writer catalytic
output, enabling relatively predictable pharmacodynamic control of
m®A deposition. By contrast, most phytochemicals do not function as
selective enzyme inhibitors with comparable potency [102]. Instead,
they more often modulate the axis at a systems level by reshaping
SAM/SAH balance through one-carbon metabolism, altering the abun-
dance or stability of writers and erasers, or biasing reader-dependent
RNA fate decisions. This distinction implies different translational
positioning [51]. Small-molecule inhibitors may be preferable when a
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disease is dominated by writer hyperactivity and requires rapid pathway
shutdown. Phytochemicals may be more suitable for chronic settings
where gradual rebalancing of methylation capacity and transcript
selectivity is desired, and where multi-target modulation could be
advantageous.

6. Roles of the SAM-m°A axis in diseases

The SAM-m®A axis is crucial in connecting methyl donor metabolism
with RNA epitranscriptome regulation [43]. Potential intervention
points are not concentrated in a single isolated protein, but rather
distributed across SAM supply and SAM/SAH balance, the dynamic
regulation of m®A writer/eraser/reader, and its downstream RNA sta-
bility and translational networks [24,50]. Therefore, the SAM- mP®A axis
is discussed as a conceptual and mechanistic framework for therapeutic
intervention, rather than as a single, discrete drug target (Fig. 4).

6.1. Tumor: metabolic-epitranscriptomic coupling

In tumors, SAM- m®A coupling links one-carbon metabolism to RNA
regulation. Changes in SAM synthesis and turnover can reshape cellular
mPA patterns. These changes then alter RNA stability, splicing, trans-
lation, and decay. The net effect is a shift in gene expression programs
that support proliferation, invasion, immune evasion, and therapy fail-
ure [48,103,104]. This shared framework is consistent across cancers.
However, mechanistic heterogeneity arises because different tumors
place the dominant control point at different levels of the axis.

A first layer of divergence sits upstream at SAM supply. Many tumors
show elevated methyl donor availability, but they reach this state
through distinct entry nodes. In lung cancer, PRPS2 promotes SAM
synthesis and increases RNA mC®A. This route is closely linked to
tumorigenesis and metastasis [51]. In hepatocellular carcinoma,
IGF2BP3 upregulates MAT2B, increases SAM generation, and
strengthens m®A-associated programs that correlate with drug resis-
tance [27]. These examples illustrate a key similarity and a key differ-
ence. The similarity is convergence on higher SAM and higher m°A
output. The difference is that the upstream driver and the dominant
phenotype are not the same [27,51]. This difference implies that
supply-side interventions may need to be tailored to the specific meta-
bolic node that anchors the coupling.
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A second layer of divergence emerges at the m®A machinery level.
Writers can expand or reinforce methylation programs, whereas readers
impose transcript selectivity and determine which RNAs become func-
tional effectors [48,104]. YTHDF1 provides a reader-centered example.
It recognizes m°A -modified FOXM1 mRNA and enhances FOXM1
translation in breast cancer, thereby linking m®A marking to oncogenic
protein production [105]. In contrast, IGF2BP proteins can stabilize
oncogenic transcripts and thus bias m®A effects toward persistence of
pro-tumor RNA states. In hepatocellular carcinoma, IGF2BP3 further
connects this reader activity to SAM supply through MAT2B regulation
[27,106]. Together, these mechanisms show why similar global m®A
shifts can yield distinct outputs. The decisive factor can be whether tu-
mors rely more on broad writer-driven programming or on
reader-driven selection of key targets [91,107]

A third layer of divergence becomes evident when considering the
tumor microenvironment. In some settings, the major consequence of
m®A regulation is not confined to cancer cells. METTL3 can regulate
tumor-infiltrating immune cells and influence immune evasion and
therapy response [108]. In renal cancer, METTL5 expression associates
with immune cell infiltration and immune-related pathways, which
supports tumor-type specificity in the m®A nodes that shape immune
context [109]. This aligns with broader evidence that m®A can regulate
metabolic gene expression and activate metabolic signaling, thereby
promoting metabolic reprogramming while altering immune properties
of the microenvironment [110]. Consistent with this concept,
single-atom catalysts have been reported to modulate m®A, reprogram
tumor-associated macrophages, and enhance anti-tumor immune re-
sponses [27,106]. These observations strengthen a key comparison. In
cancer-cell dominant models, m®A primarily drives intrinsic growth and
invasion programs. In microenvironment dominant models, m®A shapes
immune states that determine immune escape and treatment response
[110].

This layered comparison naturally leads to translational implica-
tions. When writer or reader nodes dominate, direct targeting of the m®A
machinery becomes rational. Inhibiting METTL3 or YTHDF1 can sup-
press tumor proliferation and metastasis [105]. STM2457 is a METTL3
inhibitor that inhibits proliferation and metastasis in oral squamous cell
carcinoma, and combination with anlotinib further improves thera-
peutic efficacy [102]. When microenvironmental remodeling domi-
nates, stratification based on integrated m°A states becomes equally
important. In melanoma, low m®A scores have been associated with
greater sensitivity to PD-1 and CTLA-4 inhibitors, whereas high m°A
scores correlate with resistance [110]. In glioblastoma, high glioma mSA
scores align with an immune-tolerant phenotype and poor response to
CTLA-4 blockade, while low scores indicate a better response [111].
Overall, tumors share a common SAM-m6A coupling logic, but the
dominant control node varies. It may reside in SAM supply, in writer and
reader decoding, or in microenvironmental regulation. This variability
explains differences in metastasis, drug resistance, and immunotherapy
response across cancers [7,51,68].

6.2. Neurological disorders: linking metabolism to neuroplasticity

Neurological disorders provide a clear setting to connect methyl
donor metabolism with neuroplasticity through m°A regulation. One-
carbon metabolism supports SAM synthesis, and vitamins B9 and B12
are important contributors to this process [7]. When this metabolic
input is insufficient, the epitranscriptomic output changes. Vitamin B12
deficient neurons show global mRNA m®A hypomethylation, which
supports a direct link between methyl donor status and m®A capacity
[112]. This supply-related change provides a metabolic starting point
for understanding how RNA methylation can shift in the nervous system.

Metabolic reinforcement can also reshape m®A programs, but the
biological outcome depends on the responding cell type and the down-
stream reader pathway. In cognitive impairment and inflammation-
related injury, betaine supplementation increases the SAM to SAH
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ratio and improves cellular methylation capacity. In microglia, this shift
increases m®A modification of NLRP3 mRNA and upregulates the mSA
reader YTHDF2. Higher YTHDF2 accelerates NLRP3 mRNA degradation
and reduces its stability. This suppresses NLRP3 caspase 1 GSDMD
pyroptosis and alleviates neuroinflammation and behavioral impair-
ment [84]. These findings show how a metabolic intervention can be
translated into an anti-inflammatory effect through an mSA
reader-controlled decay pathway in microglia.

After methyl donor status sets the baseline, the m®A machinery
shapes how metabolic signals influence neural development, repair, and
plasticity. METTL3 is the most frequently implicated writer in neuro-
logical and psychiatric diseases, with METTL16 and METTL14 also re-
ported. Many studies focus on neuroinflammation, synaptic plasticity,
and injury repair [113]. METTL3 dysfunction is repeatedly linked to
neurological disease susceptibility [114]. Developmental models illus-
trate this logic with clear pathway outputs. In neural tube defect models,
changes in intracellular SAM levels reshape the m®A landscape, and
METTL3 is enriched in neurons. METTL3 knockdown inhibits Wnt and
beta catenin signaling, reduces proliferation, and increases apoptosis.
ALKBHS5 overexpression also inhibits proliferation, but its effect on
apoptosis is weaker [115]. This comparison suggests that neural tube
formation depends strongly on writer-driven m®A programs, while
demethylation can modify the program but does not fully mimic loss of
METTL3. It also indicates that methyl donor status can influence neural
stem cell fate and tissue morphology through a SAM dependent m®A
pathway that converges on Wnt beta catenin signaling [115].

mPA regulation remains important beyond early morphogenesis and
contributes to neurogenesis and cognitive function. m®A controls pro-
liferation and differentiation of neural stem cells and supports neuronal
generation, which underlies brain development and function. It is also
associated with learning and memory, and abnormal m®A patterns are
linked to cognitive impairment [116,117]. Consistent with this role,
mP®A patterns show temporal changes in the cerebral cortex during
embryonic and postnatal stages, suggesting that dynamic m®A remod-
eling is part of normal developmental timing [118,119]. Mechanisti-
cally, m®A can regulate transcription factors and neurodevelopmental
genes, thereby shaping neuronal generation and function [119]. These
studies connect m®A dynamics to neuroplasticity-related outputs,
because they affect how neurons are generated and how neural circuits
mature.

In neurodegenerative diseases, the main downstream consequences
shift toward RNA metabolism instability and stress response pathways.
In Alzheimer’s disease and Parkinson’s disease, abnormal m®A modifi-
cation is linked to disrupted RNA metabolism of key genes and accel-
erated neuronal degeneration [120]. mPA also regulates
autophagy-related genes and influences neuronal autophagy, which
provides a mechanistic route to altered proteostasis in neuro-
degeneration [121]. In addition, abnormal expression of METTL3 and
FTO can affect neuroinflammation, autophagy, and mitochondrial
function, thereby influencing neuronal survival. This has motivated ef-
forts to develop small molecule inhibitors targeting METTL3 and FTO to
modulate m®A levels in neurodegenerative disease settings [121,122].
Compared with developmental models that converge on Wnt beta cat-
enin signaling, neurodegenerative models more often converge on RNA
metabolism and stress handling, including autophagy and mitochondrial
dysfunction [115,121,122].

Reader proteins provide an additional layer that explains why similar
mPA shifts can produce different inflammatory outcomes in the brain.
Microglia are the main immune cells of the central nervous system, and
their inflammatory responses are shaped by m®A-dependent RNA con-
trol. YTHDF2 promotes decay of m®A-marked RNAs and can limit
inflammation when it targets inflammatory transcripts such as NLRP3 in
microglia [84]. In contrast, IGF2BP1 can stabilize inflammation-related
mRNAs such as Gbpl1 and Cp, which supports sustained inflammatory
signaling and progression of neuroinflammation [123]. This contrast
between decay-promoting and stabilization-promoting readers
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highlights a key principle for neurological disorders. Metabolism can
change mC®A capacity, but reader-mediated selection determines
whether the net output dampens or sustains neuroinflammation [84,
123].

Overall, neurological disorders share a common SAM-mC®A frame-
work, but they differ in dominant control nodes and therefore in
phenotypic outputs. Methyl donor limitation, such as vitamin B12
deficiency, is associated with global mPA reduction in neurons [112].
Methyl donor reinforcement, such as betaine supplementation, can
engage microglial YTHDF2 and suppress pyroptosis-driven inflamma-
tion through accelerated decay of NLRP3 mRNA [84]. Writer-centered
regulation is prominent during development and links SAM availabil-
ity to m®A programs that shape neural stem cell fate and Wnt beta cat-
enin signaling [115]. In later-stage disorders, altered m®A is more often
connected to RNA metabolism disruption, autophagy, and mitochon-
drial stress, which aligns with neurodegenerative progression and
therapeutic interest in METTL3 and FTO modulation [120,121].

6.3. Metabolic diseases: hepatic glucose-lipid balance

In metabolic diseases, the liver is a central organ for glucose and lipid
metabolism. Hepatic dysfunction is therefore closely linked to the onset
and progression of multiple disorders [124,125]. A common mechanism
involves SAM-dependent control of m®A. When methylation potential
changes, m®A patterns shift and metabolic gene expression is remodeled.

Supply-sensitive models show how restoring methylation potential
can reshape mP®A on specific transcripts and improve hepatic outcomes.
In isoniazid-induced liver injury, folic acid supplementation increases
the hepatic SAM to SAH ratio and increases m®A modification of Cyp2el
mRNA. Cyp2el mRNA and protein levels then decrease. Transaminase
elevation is reduced, and liver necrosis is alleviated [85]. This example
links methyl donor status to a defined transcript and a measurable liver
phenotype. It also shows that metabolic input can be translated into
gene-specific regulation rather than only global methylation changes.

Beyond methyl donor supply, many studies in metabolic and endo-
crine diseases focus on the writer layer, especially METTL3, with re-
ported roles in lipid accumulation, islet function, and inflammatory
responses. In some contexts, METTL3 or METTL14 deficiency reduces
mP®A levels and increases expression of lipogenic genes, which is asso-
ciated with greater hepatic lipid accumulation [126]. However,
writer-dependent effects can differ across pathways and target sets.
METTL14 has been reported to increase m®A modification of Gépc
mRNA. This enhances G6pc mRNA stability and translation and in-
creases hepatic glucose production. The effect is elevated in obese
mouse livers and supports a role for m®A in impaired glucose meta-
bolism [127].

Eraser pathways add another layer of transcript selectivity and often
converge on lipid handling. m®A methylation is dynamic and reversible
and has been recognized as an important regulator of hepatic glucose
and lipid metabolism [79,126]. ALKBH5 can remove mPA from VPS11
mRNA and promote VPS11 translation. This restores autophagic flux
and reduces hepatic lipid deposition [128]. FTO provides a comple-
mentary demethylation mechanism that promotes lipogenesis. It re-
duces m®A levels in SREBP-1c and ChREBP mRNAs, increases their
stability, and enhances expression of lipid synthesis genes including
FAS, SCD1, and ACC. This promotes hepatic lipid accumulation and
contributes to NAFLD development [79,81]. These eraser-centered
mechanisms differ from the folic acid model in entry point, but they
converge on pathway-level outcomes through changes in mRNA stabil-
ity and translation.

m®A regulation can also affect hepatic oxidative capacity and
thereby influence both lipid and glucose balance. m®A has been linked to
regulation of genes such as PPARa, which impacts mitochondrial func-
tion and lipid oxidation. This provides an additional route by which m°A
can shape glucose metabolism through changes in substrate utilization
and energy handling [129].
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Overall, hepatic phenotypes depend on the dominant control node
within the SAM-m°A axis. Some models are driven by methyl donor
availability and respond to restoration of methylation potential, as
shown by folic acid effects on the SAM to SAH ratio and Cyp2el regu-
lation [85]. Other models are driven by writers or erasers and show
transcript-specific biases between glucose output and lipid storage, as
illustrated by METTL14 control of G6épc and FTO control of SREBP-1c
and ChREBP [79,81,127]. Methodologically, studies should quantify
methylation potential together with transcript-specific m®A changes,
because global m®A is not sufficient to infer pathway direction [79,126].
Causal work should prioritize defined transcripts and sites in represen-
tative pathways, including CYP2E1, G6PC, SREBP-1c, and ChREBP [81,
85,127]. Cell-type-resolved mapping is also needed, because hepato-
cytes and non-parenchymal cells such as Kupffer cells and stellate cells
may deploy different m®A effectors under the same stress [129]. Finally,
combined strategies should be explored. Methyl donor supplementation
may be paired with selective writer or eraser modulation to rebalance
hepatic glucose and lipid flux in a context-dependent manner.

6.4. Cardiovascular and renal disorders: inflammation and fibrosis

Cardiovascular and renal disorders share core pathological features.
Inflammation, oxidative stress, and endothelial dysfunction are common
drivers. These processes also connect to fibrosis and organ remodeling
[130-133]. Within this shared background, the SAM-mP®A axis provides
a mechanism that links metabolic stress to RNA-level regulation. A
consistent theme is that altered methylation capacity can shift m°A
programs and reshape inflammatory and fibrotic outputs. The dominant
control node, however, differs between cardiovascular and renal
settings.

In cardiovascular disease models, systemic metabolic stress often
appears upstream of the epitranscriptomic changes. High-fat diet
exposure alters the expression and activity of methylation-related en-
zymes. It increases DNMT1 and the RNA-editing enzyme ADAR. It re-
duces the activity of demethylases such as TET and FTO. These shifts are
associated with elevated m®A levels. They also correlate with hyper-
uricemia and cardiac and renal dysfunction [134]. Functional evidence
supports a causal contribution of this methylation program to remod-
eling. DNMT1 knockout mitigates high-fat-diet-induced cardiac and
renal remodeling and reduces markers including NGAL, FGF23,
TMPRSS2, and MMP2 [134]. This suggests that metabolic stress can
engage methylation and RNA modification pathways that amplify
inflammation and tissue remodeling, and that targeting this axis may
have therapeutic value in cardiovascular disease [134].

Renal disease studies provide more direct links between methyl
donor metabolism, m®A machinery, and fibrosis-related gene control. In
autosomal dominant polycystic kidney disease, METTL3 and m°A levels
are elevated in patients and mouse models. Kidney-specific METTL3
overexpression induces renal tubular cysts. METTL3 deletion reduces
cyst growth in multiple disease models [135]. These effects align with a
supply-linked driver. Methionine and SAM levels are increased in dis-
ease models. Exogenous methionine or SAM induces METTL3 expression
and worsens cyst phenotypes. Dietary methionine restriction slows
disease progression [135]. This creates a coherent chain in which methyl
donor availability strengthens writer activity, raises m®A output, and
promotes cyst growth.

Renal fibrosis models also highlight a one-carbon enzyme node that
channels metabolic input into a defined pro-fibrotic transcript. In sepsis-
associated acute kidney injury, the one-carbon enzyme MTHFD?2 is
upregulated in myofibroblasts. This increase raises SAM content and
m®A modification. m®A then stabilizes LOX mRNA, which promotes
collagen deposition and renal fibrosis. MTHFD2 knockdown alleviates
the pathological phenotype. When MTHFD2 is inhibited, LOX over-
expression partially restores fibrosis and tissue damage [136]. This
study supports a node-level mechanism in which a one-carbon enzyme
controls SAM, SAM supports m®A, and m®A stabilizes a fibrotic effector
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transcript [136].

Across cardiovascular and renal disorders, several m®A enzymes are
repeatedly studied. METTL14, METTL16, and METTL3 are prominent,
and research focuses on endothelial function, vascular smooth muscle
phenotypic transitions, and inflammation and fibrosis. Taken together,
cardiorenal disorders follow a shared SAM-m°A logic. The cardiovas-
cular literature more often emphasizes systemic metabolic stress with
broad methylation shifts. The renal literature provides clearer node-
level causality through methyl donor availability, METTL3, and one-
carbon enzymes such as MTHFD2 [134-136].

6.5. Immune diseases: metabolic-epitranscriptomic integration

Immune cells respond rapidly to metabolic cues, and this response is
closely coupled to changes in the SAM-m®A axis. Upon immune acti-
vation, upstream signaling pathways regulate SAM availability through
MAT2A and one-carbon metabolism. Increased SAM supply then sup-
ports m°A writing by enzymes such as METTL3, METTL14, and
METTL16. Through this mechanism, metabolic state is directly trans-
lated into transcript-selective regulation of RNA stability and trans-
lation. This coupling provides a fast and flexible way to control immune
effector output.

At a general level, the SAM-m®A axis regulates RNA stability,
translation, and degradation in immune cells. These processes shape
immune cell development, differentiation, and function, and they
contribute to the initiation and progression of immune diseases
[137-139]. A defining feature of immune systems is the need for rapid
functional switching. m®A modification is well suited for this role
because it allows post-transcriptional control without requiring new
transcriptional programs.

Natural killer cells provide a clear example of metabolic-
epitranscriptomic integration during immune activation. Short-term
activation of NK cells leads to a rapid increase in m°A levels. Deletion
of METTL3 or METTL14 disrupts NK cell homeostasis, maturation, and
anti-tumor activity, and dual knockout produces a stronger defect. In
this setting, mTORC1 activity is required for the activation-induced in-
crease in mP®A. Inhibition of mTORC1 blocks m°A elevation, whereas
exogenous SAM supplementation restores it. Transcriptome analysis
shows that effector genes such as Prfl and Gzmb carry enriched m®A
modifications, which increase their translation efficiency. These find-
ings define an mTORC1-MAT2A-SAM-m®A pathway that converts
metabolic signals directly into cytotoxic effector programs [42].

In chronic immune diseases, the same framework operates, but the
dominant responding cell type and pathological outcome differ.
METTLS3 is the most frequently studied m®A writer in immune diseases,
although its functional direction depends on cellular context and in-
flammatory stage. In rheumatoid arthritis, METTL3-mediated m®A
modification regulates genes such as ICAM2 and TRAIL-DR4. This pro-
motes synovial fibroblast proliferation and amplifies inflammatory re-
sponses [91,107]. In this disease context, m®A primarily supports
pathogenic activation of non-immune stromal cells within inflamed
joints.

In systemic lupus erythematosus, m®A regulation highlights a
different cellular axis. m®A modification promotes plasma cell infiltra-
tion and aggravates renal damage by regulating IRF4 expression [140].
This indicates that m®A-dependent control of B cell differentiation and
antibody-producing cells plays a central role in disease progression. In
parallel, m®A modification also regulates NLRP3 inflammasome acti-
vation, which influences inflammatory responses in rheumatoid arthritis
and contributes to disease severity [141]. Clinical studies further show
that abnormal m®A patterns in rheumatoid arthritis patients are asso-
ciated with disease subtype, immune cell infiltration, and therapeutic
response [142,143]. These observations suggest that m°A states reflect
both immune composition and inflammatory activity.

Taken together, immune diseases share a common SAM-m°A
framework that links metabolic state to immune effector function.
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Upstream signaling increases SAM supply through MAT2A and one-
carbon metabolism, which supports m®A writing on key transcripts by
METTL3, METTL14, or METTL16. This enables rapid and transcript-
specific control of RNA fate during immune activation, as clearly illus-
trated in NK cells. Disease specificity arises from which cell type re-
sponds most strongly and which transcripts are targeted. Rheumatoid
arthritis emphasizes METTL3 driven programs in synovial fibroblasts,
whereas systemic lupus erythematosus highlights m®A-regulated plasma
cell pathways and renal injury. Inflammasome control, including NLRP3
regulation, represents a shared module that produces distinct outcomes
across diseases. Future studies should integrate measurements of SAM
availability with transcript-level m®A mapping in defined immune cell
subsets and relate these patterns to disease stage and treatment
response.

6.6. Infectious diseases: viral-host epigenetic interactions

Viral infection is tightly coupled to host immunity, and m®A modi-
fication is an important layer of antiviral regulation [144,145]. m®A can
reshape host RNA fate and thereby tune innate immune signaling. m®A
modification can regulate PTEN mRNA stability and influence interferon
production and PI3K AKT signaling. In hepatitis B virus infection, this
mechanism modulates the immune response and is linked to liver cancer
development [146]. Compared with other disease areas, fewer studies
address infectious diseases. Among the reported regulators, METTL16
appears repeatedly, which suggests that recognition of structured RNA
sites may be important for host-pathogen interactions and antiviral
responses.

A key feature of viral infection is that the functional direction of m®A
is virus dependent. In several models, m®A favors infection by sup-
porting viral RNA stability or translation. Severe fever with thrombo-
cytopenia syndrome virus recruits host m®A regulators and increases
mOA on viral RNA, which enhances replication efficiency and infectivity
[147]. Wheat yellow mosaic virus shows a similar pattern, in which mPA
increases stability of RNA1 and promotes infection and replication
[148]. Viruses can also shift host methyl donor metabolism to raise host
m®A output. In an HCoV-OC43 model, the viral protein nsp14 activates
mTORCI signaling, increases MAT2A expression, and promotes SAM
synthesis. Higher SAM is associated with a global increase in m®A on
host RNA, which ultimately favors viral replication [149]. These studies
support a proviral mode in which viruses either decorate their own
RNAs with m®A or remodel host SAM supply to create an m°A
-permissive environment.

In other models, m®A supports host defense by enhancing innate
recognition or maintaining SAM homeostasis. Reduced m®A on SARS-
CoV-2 RNA enhances RIG-I binding, strengthens innate signaling, and
inhibits viral replication [150]. METTL16 provides a second antiviral
route that acts through the SAM supply axis. In Kaposi’s
sarcoma-associated herpesvirus infection, METTL16 recognizes a
hairpin structure in the 3°UTR of MAT2A mRNA and installs m®A, which
supports normal splicing and expression of MAT2A and stabilizes
intracellular SAM. Knockdown of METTL16 or MAT2A reduces SAM and
enhances lytic replication. Exogenous SAM supplementation suppresses
lytic replication and reverses the knockdown phenotype [73].
Host-directed m®A changes can also shape resistance by reprogramming
host gene expression. After maize chlorotic mottle virus infection, host
mPA levels are upregulated, which alters host expression patterns and
affects viral replication [151].

Overall, infectious disease models show a shared SAM-mPA frame-
work, but the outcome depends on which RNA pool is most affected and
how the virus engages innate sensing. In proviral settings, mPA enhances
viral RNA stability or translation, or viruses increase SAM supply
through mTORC1 and MAT2A to raise host m®A output [147-149]. In
antiviral settings, reduced m®A on viral RNA can increase RIG-I recog-
nition, and METTL16 can maintain MAT2A splicing and SAM homeo-
stasis to restrain herpesvirus lytic replication [73,150]. This
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bidirectional behavior supports a central conclusion. The same
SAM-mPA pathway can favor infection or strengthen host defense. The
balance is determined by virus type, RNA structure, and the relative
impact on viral versus host m°A targets.

6.7. Developmental and environmental disorders: SAM deficiency and
m6A imbalance

SAM availability sets the ceiling for m®A modification. During
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embryogenesis, SAM synthesis and utilization are tightly controlled.
This control helps maintain appropriate m®A levels on regulatory RNAs.
When SAM is insufficient, m®A decreases and key developmental tran-
scripts become dysregulated. This can disrupt normal developmental
progression. In early embryos, METTL16 deficiency or limited SAM
supply causes arrest at the blastocyst stage. This phenotype is accom-
panied by reduced m®A and broad transcriptome disruption, which
supports a critical role for the SAM-m®A axis in developmental failure
[152].
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Fig. 5. Distribution of major m®A writer enzymes across different human disease types.
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Environmental exposure can push the same axis toward deficiency.
Maternal arsenic exposure consumes SAM during methylation reactions
catalyzed by As3MT. This reduces intracellular methylation capacity
and decreases m°A levels. In the placenta, arsenic exposure lowers m°A
and reduces CYR61 protein expression. Trophoblast invasion is
impaired, which contributes to fetal growth restriction. These effects can
be partially reversed by As3MT knockdown, exogenous SAM, or folic
acid supplementation during pregnancy [153]. This model also points to
a mechanistic intersection between SAM supply control and RNA
structure sensing. METTL16 preferentially recognizes structured RNA
and regulates MAT2A splicing and expression. Loss of Mettl16 reduces
MAT2A mRNA and causes early embryonic arrest, which emphasizes
that maintaining SAM supply is required for transcriptome stability and
normal development [153].

Arsenic-driven SAM depletion can also impair metabolic homeostasis
in adult tissues through transcript-selective m®A disruption. In the liver,
arsenic depletes SAM and blocks m®A modification of pri-miR-142. This
reduces miR-142-5p maturation and increases SREBP1 and lipogenic
gene expression, which promotes NAFLD. Supplementation with SAM,
folic acid, vitamin B12, or As3MT knockdown reverses lipid deposition
[154]. This liver model mirrors the developmental and placental find-
ings. In each case, arsenic shifts methylation potential downward, m®A
regulation is disrupted on defined RNA targets, and the resulting gene
expression changes drive a tissue-specific phenotype [153,154].

Together, these studies support a unified mechanism in which
development and tissue homeostasis require stable SAM supply to
maintain m®A on key regulatory RNAs. METTL16 is a central node
because it links structured RNA recognition to MAT2A expression and
SAM maintenance. Environmental toxicants can drain SAM and desta-
bilize this control, which produces m®A imbalance and impairs embry-
onic development, placental function, and hepatic metabolism [43,152,
153].

7. Comparative distribution of m®A writer enzymes across
diseases

We mapped the distribution of m®A writer enzymes across seven
disease categories to identify disease-associated “writer hotspots” and to
extract actionable patterns for hypothesis generation. After normaliza-
tion and grouping, METTL3, METTL14, METTL16, METTLS5, and
ZCCHC4 emerged as the main writers represented in the current liter-
ature, and their relative proportions are summarized in Fig. 5.

A consistent trend is that the literature is strongly tumor-weighted,
but different writers occupy different niches. METTL3 studies are
concentrated in tumors (approximately 50 %), with substantial repre-
sentation in metabolic disease (approximately 21 %), followed by im-
mune (approximately 11 %) and neurological disorders (approximately
10 %), while cardiovascular and renal disease accounts for a smaller
fraction (approximately 6 %). METTL14 shows an even stronger tumor
emphasis (approximately 57 %), but it is comparatively more repre-
sented in cardiovascular and renal disease (about 24 %). METTL16 is
most frequently studied in tumors (approximately 71 %) and is also
present across developmental and reproductive, cardiovascular and
renal, immune and inflammatory, infectious, and neuropsychiatric cat-
egories. METTLS is largely captured by tumor research (approximately
69 %) and developmental studies (approximately 23 %), while current
ZCCHC4 reports are confined to tumor contexts. These distributions
indicate that “writer relevance” is not uniform across diseases and that
the dominant writer in a field often reflects the RNA substrate and
phenotype that the field prioritizes.

This pattern becomes clearer when writers are viewed through RNA
substrate preference rather than only disease labels. METTL3 and
METTL14 are most often discussed in the context of mRNA mC°A depo-
sition, which aligns with phenotypes that depend on transcript abun-
dance and translation efficiency. By contrast, METTL16 and METTL5 are
frequently linked to structured RNA and rRNA-related regulation, which
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may better explain their enrichment in tumor and developmental
studies. This distinction supports a broader inference: methylation of
different RNA classes may drive different biological “outputs,” and the
literature’s disease focus may partially reflect which RNA layer is most
informative or experimentally accessible in that system.

Oncology illustrates how these writers biases translate into mecha-
nistic themes. In cancer-focused studies, METTL16 and METTL3 appear
most prominent, followed by METTL5 and METTL14. The commonly
reported phenotypes include proliferation, invasion and metastasis,
apoptosis resistance, stemness maintenance, therapy resistance, and
immune microenvironment remodeling. Importantly, these outputs
often depend on reader-mediated target selection, frequently involving
YTHDF and IGF2BP families, and they interface with signaling programs
such as MYC, AKT/MAPK, JAK-STAT, and EMT (Fig. 5E). This implies
that writer prevalence alone is not sufficient to predict functional
dependence, because the same writer can support different outputs
depending on the reader axis and the dominant transcript set in a given
tumor type.

These observations motivate a future-facing shift in how the field
selects targets and designs studies. Writer research should move beyond
METTL3-centric screening toward a node- and RNA-substrate-guided
strategy. In tumors and metabolic diseases, where METTL3 and
METTL14 dominate mRNA-centered work, the key question is not only
whether m®A increases or decreases, but which reader programs decode
these marks to drive phenotype. A practical direction is to test dual-layer
intervention strategies that align the dominant writer with the key
reader axis, especially in settings where IGF2BP- or YTHDF-driven
transcript selection sustains oncogenic states. In developmental and
stress-sensitive contexts, where METTL16 and METTL5 are enriched,
future studies should prioritize structure-dependent mechanisms and
RNA-class specificity, rather than relying on global m®A measurements
that may miss the relevant layer of regulation. Across all categories,
improved comparability will require standardized reporting that in-
cludes RNA-type specificity, cell-type resolution, and quantitative
exposure or dosing information. This framework would convert a
descriptive distribution map into a mechanism-guided roadmap for
target prioritization, patient stratification, and therapeutic design (Fig. 5
and Table 2).

8. Conclusion

The SAM-mPA axis provides a coherent framework to link metabolic
state with RNA fate regulation. SAM availability, SAH accumulation,
and the SAM/SAH ratio act as central constraints on m®A deposition and
turnover. Disruption of one-carbon metabolism can therefore translate
into transcriptome-wide effects through the writer-reader-eraser ma-
chinery. Current evidence indicates that many plant-derived bioactive
compounds engage this axis indirectly. They tend to remodel methyl-
donor metabolism, redox balance, and protein abundance rather than
acting as high-affinity m®A enzyme inhibitors. This mode of action
distinguishes phytochemicals from synthetic single-target inhibitors and
suggests different translational roles. Phytochemicals may be better
suited for long-term modulation of methylation capacity in chronic
diseases, whereas direct inhibitors may be preferable for conditions
requiring rapid pathway suppression. Future studies should prioritize
quantitative SAM/SAH profiling, causal mapping of m6A—dependent
effects, and standardized exposure-response designs. Such efforts will be
essential to define efficacy, specificity, and safety. Together, these ad-
vances will clarify when and how nutritional or phytochemical strate-
gies can be harnessed to modulate the SAM-m°®A axis for disease
prevention and therapy.
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Table 2
Summary of studies on m®A writer enzymes and their disease-related mechanisms.
Writer Classification Intervention Model Target Function Keywords DOI
enzyme
METTL3 cardiovascular - RPE cells Metabolic Reprogramming Promote Retinal angiogenesis 10.1186/512974-024-03279-1
diseases
cardiovascular Leonurine Foam cells AKT1S1 mRNA Improve Atherosclerosis 10.1016/j.phymed.2024.155939
diseases
cardiovascular - - CCN2 Prevent Bladder remodeling 10.1002/nau.25233
diseases
cardiovascular Maslinic acid - - Prevent Pressure-overload-induced cardiac hypertrophy ~ 10.18632/aging.203860
diseases
immune diseases - - - - Associated with autoimmune thyroid disease 10.1007/512020-020-02503-1
susceptibility
immune diseases EZH2 B cells - Promote Autoimmunity 10.1016/j.jaut.2024.103341
immune diseases Hypoxia Pancreatic cancer cells  IncRNA NNT-AS1/METTL3- Promote Immune escape 10.1016/j.yexcr.2023.113764
HuR
immune diseases - Systemic lupus IRF4 Promote Renal injury 10.1186/512916-024-03735-y
erythematosus
immune diseases - - - Promote Synovitis 10.1016/j.yexcr.2024.114237
immune diseases - Systemic lupus CD4 + T Cell and Effector T - Lupus erythematosus 10.1186/510020-023-00643-4
erythematosus Cell
immune diseases - - NF-xB Promote Rheumatoid arthritis 10.3389/fmed.2021.607585
immune diseases - - Traf6 Inhibit Inflammatory response 10.4049/jimmunol.1801151
infectious diseases - Pancreatic cancer cells - Block Vesicular stomatitis virus 10.1128/jvi.02284-24
metabolic diseases - - Mettl3-m6A-YTHDF1 Promote Mitochondrial dysfunction in fatty liver 10.1016/j.cellsig.2024.111303
metabolic diseases - - METTL3-IGF2BP2, HDAC1, Promote; Overexpression; Liver injury 10.1139/bcb-2022-0314
FGF21 Inhibit
metabolic diseases - - Glucose Metabolism Hub Promote Steatotic liver disease 10.1186/512864-025-11377-4
Gene
metabolic diseases - - m6A-IGF2BP2 Aggravate Ferroptosis in sepsis-induced acute lung injury 10.1002/ctm2.1389
metabolic diseases - Kupffer cells STING Lead Radiation-induced liver disease 10.1016/j.ijrobp.2023.10.041
metabolic diseases - - CD36 - Dysregulated follicular glucose metabolism and ~ 10.1016/j.intimp.2024.113327
inflammation in polycystic ovary syndrome
metabolic diseases ~ Saccharomyces - - Relieve Allergic asthma 10.1016/j.imlet.2024.106853
boulardii
metabolic diseases - - Cadmium Participate Liver injury 10.1016/j.envpol.2023.121887
metabolic diseases ~ Butyric acid Granular cells FOSL2 Improve Cellular inflammation 10.1186/513148-023-01487-9
metabolic diseases - - - - Associated with the development of dry eye in 10.1186/512886-023-02988-0
primary Sjogren's syndrome
metabolic diseases  Intermittent hypoxia Adipocytes MGLL Promote Lipolysis 10.1038/541420-022-01149-4
metabolic diseases - Dental pulp stem cells - - Dental pulp stem cell differentiation 10.1177/00220345211051594
metabolic diseases - Mouse - - Liver homeostasis, hepatocyte ploidy, and 10.1016/j.ajpath.2021.09.005
circadian rhythms
metabolic diseases ~ Artemisinin Fibroblast-like ICAM2 mRNA Inhibit Rheumatoid arthritis 10.1002/ctm2.1148
synoviocytes
metabolic diseases =~ STM2457 Mouse Mitochondria Improve Fatty liver disease 10.12122/j.issn.1673-4254.2023.10.06
neurological - - Lingo2 - Alzheimer's disease 10.1038/541380-025-02984-4
diseases
neurological - NDUFA10 - - Alzheimer's disease 10.3390/ijms241210111
diseases
neurological - - - - Alzheimer's disease 10.1523/ENEURO.0125-20.2020
diseases
neurological - Microglia a-Synuclein - Neuroinflammation 10.1016/j.celrep.2025.115618
diseases
neurological - - - - Aluminum-induced neurotoxicity 10.1016/j.ecoenv.2023.115878
diseases
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Table 2 (continued)

Writer Classification Intervention Model Target Function Keywords DOI
enzyme
neurological KDM1A - STUB1 Improve Alzheimer's disease 10.1016/j.freeradbiomed.2022.12.099
diseases
neurological - - - - Nervous system 10.3390/biom13040664
diseases
Tumors Exosomal circLPAR1 - BRD4 Inhibit Colorectal cancer diagnosis and oncology 10.1186/512943-021-01471-y
Tumors - Mesenchymal stem - Promote Chemotherapy resistance in acute myeloid 10.1038/541419-023-06325-7
cells leukemia
Tumors - - PSMA3-AS1 - FLT3-ITD+ Acute myeloid leukemia 10.1080/15384101.2023.2204770
Tumors - - - Prognostic potential of METTL3 expression in 10.3892/01.2022.13651
gastric cancer patients
Tumors METTL3 small molecule ~ Non-small cell lung - - Cell carcinoma 10.1016/j.jpha.2023.04.009
inhibitor cancer
Tumors - - - Inhibit Melanoma and colon cancer cells 10.1007/s00418-024-02346-1
Tumors - - - - Thyroid cancer 10.62347/THJB4749
Tumors - Platinum-induced - Relieve Renal fibrosis; chemotherapy efficacy 10.7150/ijbs.117443
mouse
Tumors - - - - Pan-cancer tumor immune microenvironment 10.3390/jcm12010155
Tumors - Human - - Cervical cancer clinical features 10.1186/512967-020-02553-z
Tumors ACAT1 Breast cancer cells - Inhibit Cancer cell migration and invasion 10.1038/541435-023-00202-1
Tumors - - RNA LINC00969 Relieve Papillary thyroid carcinoma 10.17219/acem/188367
Tumors - - - - Colorectal cancer 10.3892/01.2021.12936
Tumors RNA LINC00240 miR-338-5p/METTL3 - Promote Gastric cancer progression 10.1080/21655979.2021.1983276
Tumors Eltrombopag Cells - - Acute myeloid leukemia cells 10.3390/ph15040440
Tumors - Gastric cancer cells - Inhibit Cell proliferation 10.3892/01.2020.11794
Tumors - - - Gynecologic cancers 10.3389/fphar.2023.1156629
Tumors - - Myc Promote Cervical cancer 10.24976/Discov.Med.202436188.176
Tumors NSUN6 - 5-methylcytosine Promote Colon adenocarcinoma 10.1002/jbt.23749
Tumors - - p38/ERK Inhibit Proliferation and migration of colorectal cancer ~ 10.2147/0TT.S201052
Tumors - - - Prostate cancer 10.1158/1541-7786.MCR-21-0014
Tumors - Hepatocytes ZNF384; ACSM1 Promote Hepatocellular carcinoma progression 10.1007/512094-024-03701-3
Tumors - - HDAC5/YY1; IFFO1 Promote Tumor development and chemoresistance 10.1016/j.canlet.2022.215971
Tumors M2-TAM - - Promote Immune resistance in lung adenocarcinoma 10.21037/atm-22-6104
Tumors - Esophageal squamous Nectin-4; VNN1 Promote Progression of esophageal squamous cell 10.3724/abbs.2025108
cell carcinoma
Tumors - Hepatocytes - - Prognosis of hepatocellular carcinoma patients 10.21037/atm-22-5964
Tumors - - YY1; pri-microRNA-27 Promote Development of multiple myeloma 10.1007/510565-021-09690-1
Tumors - - - - Esophageal cancer; Squamous cell carcinoma 10.3389/fonc.2022.824190
Tumors - Human - Premonition Poor prognosis in patients with esophageal 10.2147/CMAR.S245019
squamous cell carcinoma
Tumors - - MYC Promote Prostate cancer 10.7150/jca.42338
Tumors - - FGD5-AS1; PD-1/PD-L1 - Enhanced resistance to paclitaxel in 10.1111/jemm.17971
endometrial cancer
Tumors - Nasopharyngeal pri-miRNA-19a Promote Proliferation and invasion of nasopharyngeal 10.1152/physiolgenomics.00007.2022
carcinoma cells carcinoma cells
Tumors IncRNA NUTM2A-AS1 Lung adenocarcinoma miR-590-5p/METTL3 Inhibit Lung adenocarcinoma cells 10.3892/01.2021.13059
cells
Tumors - Human p cells - - Innate immune response in type 1 diabetes 10.1101/2023.02.16.528701
Tumors - - SRSF1 Promote MDS/AML progression 10.1016/j.ymthe.2025.08.042
METTL14 cardiovascular - Mice GLUT9 Reduce Renal tubular epithelial cell fibrosis 10.1038/541418-025-01561-0
diseases
cardiovascular - - - Promote Intimal hyperplasia 10.1080/16078454.2025.2535819
diseases
cardiovascular Smoking and Tetrameric - DIXDC1 Accelerate Intervertebral disc degeneration 10.1016/j.cellsig.2024.111304
diseases Tryptase
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Table 2 (continued)

Writer Classification Intervention Model Target Function Keywords DOI

enzyme
cardiovascular - TEAD1 mRNA Promote Vascular smooth muscle cell proliferation and 10.1016/j.intimp.2024.113308
diseases neointimal formation
cardiovascular - - - Weaken Cardiotoxicity 10.1172/jci.insight.184444
diseases
immune diseases - - MyD88/NF-kB Promote MAFLD progression 10.1007/5s12033-023-00843-7
metabolic diseases - - TUG1 Promote Diabetic nephropathy 10.1016/j.ymthe.2023.06.010
metabolic diseases - - - - Dysregulated RNA 10.31083/j.fb12908298
neurological - - TUG1;GDF15 Inhibit Ferothrombosis in Alzheimer's disease 10.1186/s12964-025-02130-1
diseases
Tumors - - - Promote Juvenile myelomonocytic leukemia 10.1002/tox.24187
Tumors - - - - Chronic myeloid leukemia 10.1007/s00592-023-02145-5
Tumors - - TCP1 mRNA Promote Acute myeloid leukemia 10.1002/jbt.70284
Tumors - - SCD1 Inhibit Tumor stemness and metastasis in colon cancer ~ 10.1101/2024.06.17.599413

cells
Tumors - - - - Acute myeloid leukemia 10.1161/JAHA.124.040700
Tumors - - pri-microRNA-129 Promote Docetaxel resistance in prostate cancer 10.2147/DDDT.S506702
Tumors Sijunzi Decoction - - Inhibit Gastric cancer metastasis 10.3892/01.2021.13108
Tumors - - Twist Inhibit Non-small cell lung cancer 10.3389/fonc.2021.696371
Tumors - - Cytidine deaminase Promote Gemcitabine resistance in pancreatic cancer 10.1038/541392-024-01797-1
Tumors LncRNA UCA1 - - Promote Breast cancer 10.1038/541417-021-00390-w
Tumors - Human - - Acute lymphoblastic leukemia 10.2147/CMAR.S335925
Tumors - - PI3K/AKT/mTOR Inhibit Proliferation, migration, and invasion in gastric ~ 10.1002/jcla.23655
cancer

METTL16 cardiovascular - - TET2 Lead to Coronary artery disease 10.1111/cpr.13782
diseases
cardiovascular - - METTL16/Akt Improve Thrombocytopenia 10.1186/513045-024-01599-6
diseases
cardiovascular - - - - Hematologic disorders 10.7150/1jbs.105391
diseases
cardiovascular - Human - - Myocardial cells 10.1038/541556-021-00835-2
diseases
cardiovascular - PM2.5 - - Susceptibility to sudden cardiac death 10.1016/j.stem.2022.12.006
diseases
developmental - Spermatogonia YTHDC1 - Pulmonary microvasculature 10.1016/j.canlet.2025.217698
diseases
developmental - - - - Spermatogonia differentiation 10.1186/513045-024-01526-9
diseases
developmental - Mice Alternative splicing and - Chromosomes 10.1016/j.exer.2025.110514
diseases translation control
developmental - - - Spermatozoa 10.7150/ijbs.97886
diseases
developmental - Mice - - Nonsyndromic maxillofacial cleft palate 10.1016/j.celrep.2023.112150
diseases
immune diseases - - - Weaken Embryonic development 10.1002/advs.202406332
immune diseases Oxidative stress - MAT2A Aggravate Apoptosis 10.1186/513059-024-03332-5
immune diseases - Human Glutamine Nucleus pulposus cell apoptosis 10.2147/JIR.S487828
infectious diseases - - S-adenosylmethionine cycle Control Airway inflammation 10.1038/541419-023-06121-3
infectious diseases ~ Miichthys miiuy - - Inhibit Kaposi's sarcoma-associated herpesvirus 10.1038/541467-023-42025-8
infectious diseases - - HLA-DPB1 - Antiviral; immune response 10.1007/510238-025-01669-0
metabolic diseases - - CIDEA Promote Chronic hepatitis B 10.1186/512885-025-14729-1
neurological - - - Promote Nonal fatty liver disease 10.1186/513046-023-02732-y
diseases
neurological - - MAT2A Destroy Corneal nerve regeneration 10.18632/aging.206210
diseases
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Table 2 (continued)

Writer Classification Intervention Model Target Function Keywords DOI
enzyme

Temrobegical - Mice MRT?PAL & SENT3; IA[F1-42 Promote Learning and memory 10.1098/j$9e(EIZR0080062116

diserses - - Metabolic reprogramming Promote Tumorigenesis in hepatocellular carcinoma 10.1186/512885-025-14291-w

Tumors - - - Promote Colorectal cancer 10.1002/bdr2.2403

Tumors - - BCAA Promote Translation and tumorigenesis 10.1007/s00018-024-05146-x

Tumors - - - - Leukemogenesis and leukemic stem cells 10.1002/jcp.31068

Tumors - Liver Cancer Stem Ribosomes; mRNA Promote Cancer 10.1016/j.celrep.2025.115926

Cells

Tumors - - ATF4 Inhibit Hepatocellular carcinoma 10.1016/j.jhazmat.2024.136093

Tumors - - Cytoplasmic eIF4E Promote Ferroptosis in cholangiocarcinoma 10.1038/541420-022-01220-0

Tumors - - FDX1 mRNA Promote Translation and lung cancer 10.3389/fcell.2022.759020

Tumors - - TCF-1 Promote Goblet cell apoptosis in gastric cancer 10.1016/j.abb.2025.110510

Tumors - - GPX4 m6A - Acute myeloid leukemia 10.1016/j.isci.2023.108495

Tumors - - Metabolic reprogramming - Ferroptosis and TKI resistance in non-small cell ~ 10.1186/513046-023-02844-5

lung cancer
Tumors Cinnamic acid - - Treat Colorectal cancer 10.1111/cpr.13590
derivatives

Tumors - - - Promote Hepatocellular carcinoma 10.1016/j.bbrc.2024.149802

Tumors - - MROHS8;CAPN2 Inhibit Pancreatic cancer proliferation and metastasis 10.1016/j.a0hep.2025.101776

Tumors Planthophylloside D - - Promote Docetaxel therapy for prostate cancer 10.1186/512885-025-14041-y

Tumors - - m6A/YTHDC2/SCD1 Inhibit Papillary thyroid carcinoma Adenocarcinoma 10.1186/511658-022-00342-8

Tumors - - VPS33B Promote Osteosarcoma 10.1016/j.ijbiomac.2024.136176

Tumors SSB - - Promote Chemoresistance in colorectal cancer cells 10.1007/s11010-025-05346-4

Tumors - - Glutamine; glutamine - Chromium and lung cancer 10.7150/ijbs.86719
transpeptidase (GLUL)

Tumors - - - Predict Pancreatic ductal adenocarcinoma 10.3389/fonc.2023.1138238

Tumors Norcantharidine - METTL16/MAT2A Inhibit Ovarian cancer cell apoptosis 10.1186/s540170-024-00351-5

Tumors Hypoxia Liver Cells HIF-10/METTL16/Inc- Induce Hepatocellular carcinoma metastasis 10.1111/bjh.19722
CSMD1-7/RBFOX2

Tumors - - PRDM15;FGFR4 Promote Cholesterol duct carcinoma 10.2147/1JN.S520329

Tumors - - Sogal Maintain Colorectal cancer; Chromosomes 10.1002/cam4.70772

Tumors - - POU3F2/METTL16/PFKM Promote Glycolysis; Tumors 10.18632/aging.204980

Tumors - - miR-146b-5p; PI3K/AKT Sensitize Non-small cell lung cancer; Osimertinib 10.7150/jca.85860

Tumors - - RAB11B-AS1 Promote Hepatocellular carcinoma 10.1155/2023/9952234

Tumors - - SAMD11 Inhibit Thyroid cancer 10.3390/ijms21218139

Tumors - - KLK4 Promote Renal cell carcinoma 10.7150/ijbs.95375

Tumors - - PMEPA1 Inhibit Bladder cancer 10.1016/j.dci.2023.104713

Tumors - - p21 Inhibit Pancreatic adenocarcinoma 10.1016/j.bbrc.2022.10.065

Tumors - - FBXO5 Promote Breast cancer 10.1615/

CritRevEukaryotGeneExpr.2025058118

Tumors - - - Inhibit Triple-negative breast cancer 10.1186/513008-025-00156-y

Tumors - - UBXN1 Induce Gastric cancer 10.1111/jcmm.16664

Tumors Rectal cancer cells - PD-L1 Mediate Colorectal cancer 10.3389/fgene.2022.996245

Tumors - - DVL2; Wnt/p-catenin Inhibit Pancreatic cancer 10.1155/2022/4036274

Tumors - - IncRNA MALAT1/p-catenin Inhibit Epithelial ovarian cancer 10.7150/jca.90379

Tumors - - COL10A1; SYNPO2L Lead to Lung metastasis 10.3389/fnagi.2025.1572976

Tumors - - GPX4 Promote Breast cancer 10.1016/j.molcel.2018.08.004

Tumors - - FGD5-AS1;miR-195-5p/ Promote Osteosarcoma 10.1371/journal.pone.0306043
SLC7A2

Tumors - - GTSE1;p53 Accelerate Lung adenocarcinoma 10.1016/j.amjcard.2023.06.062

Tumors - - D1 Promote Gastric cancer 10.7717/peerj.14379

Tumors - - - - Epithelial ovarian cancer 10.1038/543018-022-00429-3

Tumors - - - - Hemoglobin H disease 10.1016/j.ecoenv.2024.117518

Tumors - - MRE11; PARP - Pancreatic ductal adenocarcinoma 10.1016/j.envpol.2022.119115

Tumors - - AMD1;MAT2A - H3K27M histone mutant glioma 10.1093/neuonc/noad073.083
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Table 2 (continued)

Writer Classification Intervention Model Target Function Keywords DOI
enzyme
Tumors - - MRE11; PARP - Pancreatic ductal adenocarcinoma 10.21203/rs.3.rs-598847/v1
METTLS cardiovascular - Cells - - Atherosclerosis 10.1038/541598-025-03411-y
diseases
cardiovascular - - SUZ12 Promote Cardiac hypertrophy 10.1016/j.freeradbiomed.2025.05.392
diseases
developmental - Human; Mice 18S rRNA m6A Induce Oligostematospermia 10.4251/wjgo.v16.i5.1925
diseases
developmental - - - Lead Recessive intellectual disability 10.1038/541419-025-07904-6
diseases
developmental - - - Promote Corticospinal tract 10.1016/j.ymthe.2025.08.009
diseases
developmental - Mice - Promote Embryonic stem cells 10.1016/j.ymthe.2023.09.014
diseases
developmental - Human - Lead Microcephaly 10.1080/14796694.2024.2442296
diseases
developmental - - CHCHD2 - Neurodevelopment 10.1016/j.cellsig.2025.111740
diseases
developmental - Mice - Improve Embryology 10.1016/j.biocel.2025.106822
diseases
developmental - - - - Developmental program 10.1002/cac2.12403
diseases
developmental - Human - - Syndrome of intellectual disability 10.1111/jop.13601
diseases
immune diseases - - M2 macrophages Relieve Respiratory allergy 10.1007/s11033-024-10207-2
Tumors Breviscapine - - Inhibit Ovarian cancer 10.3389/fonc.2025.1522157
Tumors - - Ferroptosis Trigger Myocardial injury 10.1002/cam4.7165
Tumors - - Sphingomyelin metabolism Promote Gastric cancer progression 10.18632/aging.205755
Tumors - - SEPHS2; selenoprotein Promote Multiple myeloma 10.1038/541420-024-02166-1
Tumors - - - Promote Intrahepatic bile duct carcinoma 10.1016/j.ajhg.2019.09.007
Tumors - - - - Hepatocellular carcinoma 10.1007/s10735-025-10495-3
Tumors - - SLC7A11; ferroptosis Promote Cervical cancer 10.1016/j.expneurol.2024.115000
Tumors - - USP5; c-Myc; glucose Promote Hepatocellular carcinoma 10.15252/embr.201949863
metabolism
Tumors - - Myc Promote Oral squamous cell carcinoma 10.1038/510038-025-01354-w
Tumors - - - Predict Gastrointestinal cancer 10.1101/2025.07.13.664555
Tumors - - DEPDC1 Promote Lung squamous cell carcinoma 10.1530/REP-22-0169
Tumors - Cells - - Hepatocellular carcinoma 10.1038/541598-023-37807-5
Tumors - - - Inhibit Gastric cancer 10.3389/fcvm.2022.852775
Tumors - - UBE3C; AHNAK Promote Osteosarcoma 10.1016/j.celrep.2020.108544
Tumors - - - Biomarker Hepatocellular carcinoma 10.3892/ij0.2021.5299
Tumors - - - Promote Breast cancer cells 10.1016/j.yexcr.2024.114219
Tumors - - c-Myc Promote Pancreatic cancer 10.1089/gtmb.2023.0531
Tumors - - TPRKB Promote Hepatocellular carcinoma cells 10.1101/gad.333369.119
Tumors - - IGF2BP3 Promote Cancer cell proliferation 10.4251/wjgo.v16.i5.2006
Tumors - Cells Toll-like receptor 8 Promote Cell proliferation, invasion, and migration 10.1186/512935-021-02274-3
Tumors - - - Predict Gastric cancer 10.3389/fgene.2020.617174
Tumors - - - Predict Lung adenocarcinoma immunity 10.7150/jca.90379
Tumors - Human - - Epithelial ovarian cancer 10.1080/1120009X.2022.2143614
Tumors - Liver cells Myc; PD-L1 Inhibit Hepatocellular carcinoma cells 10.1016/j.heliyon.2022.e12078
Tumors - - - Biomarker Renal cancer 10.24953/turkjped.2020.3992
can
Tumors - - - - Lung adenocarcinoma 10.3934/mbe.2021327
Tumors - Human - Lead Microcephaly-associated intellectual disability 10.1007/512041-023-01441-x
ZCCHC4 Tumors - Human DNA damage Promote Cancer 10.1038/541392-022-01033-8

(continued on next page)

0 7 opyz ‘&

vI1801 (920Z) STT Yo4Dasay |DI150]0IDULIDY]



Y. Zhao et al.

Table 2 (continued)

DOI

Keywords

Function

Target

Model

Intervention

Classification

Writer

enzyme

10.1615/

Osteosarcoma

Promote

ITGB1

Tumors

CritRevEukaryotGeneExpr.2023047798

10.1038/541598-025-89628-3

Esophageal cancer

Regulate
Promote

ROS/c-myc

Tumors

10.1186/513046-024-02965-5

Colorectal cancer

LncGHRLOS

Tumors
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