

Effects of lifestyle interventions in pregnancy on gestational diabetes: individual participant data and network meta-analysis

John Allotey,¹ Dyuti Coomar,² Joie Ensor,^{3,4} Gabriel Ruiz-Calvo,⁵ Anna Boath,⁶ Chidubem Okeke Ogwulu,³ Mark Monahan,³ Valencia Kabeya,² Min Zheng,⁷ Rachel McNeill,¹ Hollie Meacham,² Ghadir Mahmoud,² Sharon Anne Simpson,⁸ Graham A Hitman,⁹ Krish Nirantharakumar,¹⁰ Nicola Heslehurst,¹¹ Mireia Pelaez,¹² Serena Tonstad,¹³ SeonAe Yeo,¹⁴ Jose G Cecatti,¹⁵ Fabio Facchinetto,¹⁶ Narges Sadat Motahari-Tabari,¹⁷ Kristina M Renault,^{18,19} Kym J Guelfi,²⁰ Dorte Møller Jensen,^{21,22,23} Cheryce Harrison,²⁴ Mahnaz Bahri Khomami,²⁴ Alfonso L Calle-Pascual,^{25,26} Fionnuala M McAuliffe,²⁷ Hans Hauner,²⁸ Ruben Barakat,²⁹ Nina Rica Wium Geiker,³⁰ Christina Anne Vinter,^{21,22,23} Suzanne Phelan,³¹ Tarja I Kinnunen,³² Alka Kothari,^{33,34} Helena Teeude,²⁴ Lucilla Poston,³⁵ Ana Pilar Betrán,³⁶ Ngawai Moss,³⁷ Stamatina Iliodromiti,³⁸ Frances Austin,³⁹ Tracy Roberts,³ Javier Zamora,^{5,40} Richard D Riley,^{3,4} Shakila Thangaratinam^{1,41,42}; on behalf of the i-WIP Collaborative Group

Protected by copyright, including for users related to text and data mining, AI training, and similar technologies. BMJ: first published as 10.1136/bmj-2025-084159 on 6 January 2026. Downloaded from <https://www.bmjjournals.org/> on 4 February 2026 at Ms M D Linan Agencia De Salut Publica De Barcelona.

For numbered affiliations see end of the article

Correspondence to: J Allotey
john.allotey@liverpool.ac.uk;
(ORCID 0000-0003-4134-6246)
Additional material is published online only. To view please visit the journal online.

Cite this as: *BMJ* 2026;392:e084159
<http://dx.doi.org/10.1136/bmj-2025-084159>

Accepted: 23 October 2025

ABSTRACT

OBJECTIVES

To assess the effects of lifestyle interventions on gestational diabetes, determine whether the effects vary by maternal body mass index, age, parity, ethnicity, education level, or intervention, and rank interventions by effectiveness.

DESIGN

Individual participant data (IPD) and network meta-analysis.

DATA SOURCES

Major electronic databases (January 1990 to April 2025).

METHODS

This meta-analysis included randomised trials on the effects of lifestyle interventions (physical activity based, diet based, or mixed) in pregnancy

on gestational diabetes. Main outcomes were gestational diabetes defined by any criteria and by UK NICE (National Institute for Health and Care Excellence) criteria; other outcomes included IADPSG (International Association of Diabetes in Pregnancy Study Group) and modified IADPSG defined gestational diabetes. A two stage IPD meta-analysis estimated summary odds ratios and 95% confidence intervals and interactions (subgroup effects), along with absolute risk reduction estimates. Aggregate data from non-IPD trials were added to the meta-analysis when possible. Intervention effects were ranked using network meta-analysis.

RESULTS

104 randomised trials (35 993 women) were included, with IPD for 68% of participants (24 391 women; 54 studies). Lifestyle interventions reduced gestational diabetes defined by any criteria by 10% in IPD trials (odds ratio 0.90, 95% confidence interval (CI) 0.80 to 1.02; absolute risk reduction 1.3%, 95% CI -0.3% to 2.6%), and by 20% when combining IPD and non-IPD trials (odds ratio 0.80, 95% CI 0.73 to 0.88; absolute risk reduction 2.6%, 95% CI 1.6% to 3.6%), and no reduction was observed using NICE criteria (odds ratio 0.98, 95% CI 0.84 to 1.13). Lifestyle interventions reduced gestational diabetes defined using IADPSG criteria by 14% in IPD trials (odds ratio 0.86, 95% CI 0.75 to 0.97; absolute risk reduction 2.7%, 95% CI 0.6% to 5.0%) and by 18% when combining IPD and non-IPD trials (odds ratio 0.82, 95% CI 0.72 to 0.93; absolute risk reduction 3.5%, 95% CI 1.3% to 5.7%). Effects did not vary by maternal characteristics, except for education. Although women of all educational levels benefited from the intervention, the benefit was less in those with low education (low v middle interaction: odds ratio 0.68, 95% CI 0.51 to 0.90; low v high interaction: odds ratio 0.71, 95% CI 0.54 to 0.93). Benefits did not vary by intervention characteristics, except for greater effectiveness with group format (odds ratio 0.81, 95% CI 0.68 to 0.97; absolute risk reduction 2.5%, 95% CI 0.4% to 4.3%) and newly trained facilitators (odds ratio 0.82, 95% CI 0.69 to 0.96; absolute risk reduction 2.4%, 95% CI 0.5% to 4.2%). Physical activity based interventions

WHAT IS ALREADY KNOWN ON THIS TOPIC

Lifestyle interventions such as physical activity and diet prevent type 2 diabetes in the general population and have the potential to prevent gestational diabetes in pregnancy

Physical activity and diet based interventions in pregnancy are effective in reducing gestational weight gain, but evidence varies about their effects on gestational diabetes, or which intervention is most effective

Studies are needed analysing whether the effects of lifestyle intervention vary in different subgroups of women according to their body mass index, age, parity, ethnicity, and socioeconomic status, or by intervention characteristics

WHAT THIS STUDY ADDS

The global i-WIP Collaborative Group conducted a large individual participant data (IPD) meta-analysis and showed that lifestyle interventions prevent gestational diabetes, with effects varying by diagnostic criteria

The effects of lifestyle interventions on gestational diabetes did not vary across maternal characteristics like body mass index, age, parity and ethnicity, but varied by educational levels, where women with low education levels benefitted less

The effects were similar irrespective of frequency, intensity, facilitator type, setting, mode of delivery, and timing of interventions; greater benefits were observed with group formats and newly trained providers, and physical activity based interventions were consistently most effective

ranked highest (mean rank 1.1, 95% CI 1 to 2) in preventing gestational diabetes.

CONCLUSIONS

Lifestyle interventions in pregnancy are likely to prevent gestational diabetes, with effects varying according to diagnostic criteria. Implementation strategies should address inequalities by maternal education, and consider group formats, provider training, and physical activity based interventions to prevent gestational diabetes.

STUDY REGISTRATION

PROSPERO CRD42020212884.

Introduction

Gestational diabetes, characterised by glucose intolerance first diagnosed during pregnancy, affects 7–38% of pregnancies worldwide.¹ Gestational diabetes poses substantial risks to mother and baby during pregnancy because of increased risk of stillbirths, preterm births, pre-eclampsia, caesarean section, large for gestational fetuses, and birth trauma.^{2 3} In the long term, gestational diabetes predisposes the mother and her offspring to obesity, type 2 diabetes, and cardiovascular complications.^{2 4} The rates of gestational diabetes are rising worldwide owing to a population level increase in sedentary behaviour, poor diet, and obesity; these rates need to be curbed.⁵ Lifestyle interventions such as physical activity and dietary modifications that are effective in preventing type 2 diabetes⁶ have the potential to prevent gestational diabetes.

Despite the investment of over £10m (\$13.1m; €11.3m) in trials on lifestyle interventions in pregnancy, none have been implemented in routine practice.^{7–9} Randomised trials and systematic reviews report clear benefits of lifestyle interventions in pregnancy in reducing gestational weight gain,^{7 8} but findings vary for gestational diabetes.^{7 9–11} Robust evidence is lacking to guide policy makers in making recommendations on the preferred type of lifestyle intervention to prevent gestational diabetes, or whether the interventions should be focused on specific groups of pregnant women. Study level meta-analyses using aggregate data are limited by the heterogeneity in the reported study populations, interventions, and outcome definitions.¹⁰ We also do not know if the effects of interventions on gestational diabetes vary by maternal characteristics, such as body mass index, age, parity, ethnicity, and socioeconomic status, or by components of the intervention.^{12 13}

In this individual participant data (IPD) meta-analysis of randomised trials, we firstly assessed the effects of lifestyle interventions categorised as mainly physical activity based, diet based, or with mixed components, on gestational diabetes defined by any criteria and by UK NICE (National Institute for Health and Care Excellence) criteria. Secondly, we assessed these effects using the IADPSG (International Association of Diabetes in Pregnancy Study Group) and modified IADPSG criteria, reflecting international

variation in diagnostic thresholds, clinical guidelines, and healthcare practices.¹⁴ We studied whether the intervention effects varied by baseline maternal body mass index, age, parity, ethnicity, or education level, and by intervention components. We ranked the interventions by their effectiveness in reducing gestational diabetes and assessed their effects on critically important maternal and perinatal outcomes.

Methods

We undertook the IPD meta-analysis using prospective protocol registered with PROSPERO (CRD42020212884),¹² and reported in line with recommendations of the PRISMA-IPD (preferred reporting items for systematic reviews and meta-analysis of individual participant data) guidelines.¹⁵

Study governance and data source

The IPD were provided by members of the i-WIP Collaborative Group.⁸ Relevant trials were identified by a systematic review of the literature. We have previously reported details on how we contacted the authors and obtained data that were checked for quality, recoded, and harmonised for analyses.⁸ Briefly, eligible trials were identified through systematic searches of major electronic databases, supplemented by internet searches and contact with research experts. We established the i-WIP Collaborative Group by contacting researchers of eligible studies and asking them to share data in any format along with data dictionaries or coding guides. A bespoke database was developed for the IPD, and data were checked for completeness, plausibility, and consistency against published reports. Data were then formatted, recoded, and harmonised across trials to enable participant level analyses. Full details of these procedures are available in our previous publications.^{8 13} The i-WIP data sharing committee approved the use of the data. An independent project steering committee oversaw the conduct of the study. University of Birmingham Research Ethics (ERN_20-1748) confirmed exemption from formal ethics approval.

Search strategy and study selection

We updated our previous systematic review using two search periods to identify new trials on diet and physical activity in pregnancy.¹³ In the first period (from February 2017 to March 2021, which was the endpoint for IPD acquisition to allow sufficient time for data cleaning, standardisation, and amalgamation of datasets), we identified trials to obtain IPD to add to our existing i-WIP IPD repository. We undertook a further search in the second period (from April 2021 to April 2025) to identify new trials published after the IPD acquisition timeline. We searched Medline, Embase, BIOSIS, LILACS, Pascal, Science Citation Index, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews of Effects and Health Technology Assessment Database without language restrictions. Supplementary web appendix 1 provides details of

the search strategy. Two independent reviewers (DC and AB) performed the study selection process, with disagreements resolved by a third reviewer (JA).

We included trials that randomly assigned pregnant women as individuals or in clusters to lifestyle interventions (physical activity, diet, mixed) or standard care and collected relevant data on gestational diabetes. We excluded women with a known diagnosis of gestational diabetes at baseline or trials that evaluated weight loss interventions such as surgery or pharmacotherapy. Lifestyle interventions were grouped into mainly physical activity based interventions that were supervised or non-supervised; mainly diet based interventions involving a specific diet like the Mediterranean diet or other supervised and non-supervised dietary plans; and mixed interventions providing overall guidance on diet and physical activity with varying levels of intensity and structure.¹²

The primary outcomes were gestational diabetes as defined by any criteria and by NICE criteria.² Secondary outcomes included gestational diabetes defined by IADPSG criteria,¹⁶ and critically important maternal and perinatal outcomes previously determined by a Delphi survey.¹⁷ Supplementary web appendix 2 provides the outcome definitions. We invited the authors of relevant studies identified in the first search period to join the i-WIP Collaborative Group and share participant level data with the i-WIP database in any format. When there was no initial response, we sent three further reminders to each author. For studies that did not provide IPD or whose authors did not respond, or those included in the second search period, we extracted the published aggregate data.

Quality assessment and data extraction

Two independent reviewers (DC and AB) assessed the quality of the included studies using the Cochrane risk of bias tool for sequence generation, allocation concealment, blinding, completeness of outcome data, and selective outcome reporting.¹⁸ We evaluated outcome selective reporting by confirming whether gestational diabetes was a prespecified outcome and whether it was fully reported. We considered a study to have a high risk of bias if any of the following domains were considered to be at high risk: randomisation, allocation concealment, blinding of outcome assessment, and completeness of outcome data. These domains should be scored as low risk for a study to be classified as low risk of bias. For trials that shared IPD, we used the IPD to assess for selection bias by evaluating between-group baseline imbalances for the key prognostic factors like age and body mass index, and for attrition bias by studying the completeness of outcome data for each woman in each group. Two independent researchers (DC and AB, VK, GM, or MBK) undertook data extraction at the study level for inclusion and exclusion criteria, the characteristics of the intervention, and the reported outcomes. We used the Template for Intervention Description and Replication (TIDieR) framework¹⁹ to

map and categorise the core components of lifestyle interventions. We also extracted the published study level data for studies published beyond the IPD acquisition phase, and those for which IPD were not provided by the study authors.

Statistical analysis

We performed a two stage IPD meta-analysis to obtain summary estimates of the odds ratio and 95% confidence interval (CI) for the overall intervention effect, and for the interaction between potential effect modifiers (baseline body mass index, age, parity, ethnicity, or education level) and intervention effect for each primary outcome. We assessed the overall effects of lifestyle interventions and by each intervention type (physical activity based, diet based, and mixed approach). Participant level missing data patterns and baseline imbalances were summarised to check for systematic differences in missing data, as detailed in our statistical analysis plan (supplementary web appendix 3). All analyses were performed after imputing a minimal subset of missing data using the corresponding mean of participants within the same study and allocation group.

For the two stage analysis of the overall intervention effect, in the first stage, we fitted logistic regression models for each trial separately with the intervention as a covariate, adjusting for maternal age and body mass index where available. For cluster trials, we additionally included a random effect for the unit of randomisation (to account for clustering). For trials with several intervention arms, we analysed each intervention separately when these were different or combined groups when they were similar, with all comparisons made against usual care. In the second stage, we pooled the studies intervention effect estimates using a random effects meta-analysis model fitted with restricted maximum likelihood. Confidence intervals for the summary effect were inflated using the Hartung-Knapp correction.²⁰ To aid interpretation, we calculated absolute risk reductions and their 95% CIs by applying the pooled odds ratios to the average baseline risk of the outcome across all studies included in the meta-analysis, following GRADE (grading of recommendations assessment, development and evaluation) guidance.²¹ We investigated small study effects (potential publication or availability bias)²² through contour enhanced funnel plots for analyses containing 10 or more studies. We obtained summary estimates of overall intervention effects across all published studies by incorporating the study level data of studies that did not share IPD within the second stage of the IPD meta-analysis framework. Sensitivity analyses were conducted to exclude IPD from studies at high risk of bias. Heterogeneity was summarised using the estimated between study variance (τ^2) and by approximate 95% prediction intervals for the intervention (or interaction) effect in a new study.²³

To assess the differential effects of the intervention by maternal characteristics, we extended the models to include treatment covariate interaction terms for

maternal body mass index, age, parity, ethnicity, and education level in the IPD studies only. We obtained summary estimates of these subgroup effects (interactions) using the two stage IPD meta-analysis framework for the overall intervention. Interaction effects were first estimated within each study by fitting a regression model that included the intervention group, the potential effect modifier (subgroup variable), and their interaction term. The coefficient of the interaction term (on the log odds scale) was extracted from each study and then pooled in a random effects meta-analysis model in the second stage to obtain a summary interaction effect. Continuous covariates were analysed on their continuous scale and for predetermined, clinically defined, categorical values. To assess the differential effects by TIDieR intervention components, we conducted random effects meta-regression analyses using study level effect estimates. Intervention characteristics, including theory basis, resource provision, facilitator type, facilitator training, mode and structure of delivery, setting, number and duration of sessions, and gestational age at intervention start, were included as explanatory variables in separate meta-regression models.

For secondary binary outcomes, we used logistic regression models in the first stage and random effects meta-analysis in the second stage to obtain summary estimates and 95% CIs for the intervention effects (odds ratios). Forest plots were generated to display study specific and pooled results. To combine direct and indirect evidence to estimate intervention effects, we performed a network meta-analysis for gestational diabetes defined by any criteria using a multivariate random effects framework.²⁴ We were unable to statistically test the consistency assumption owing to the geometry of the network. Finally, we calculated the intervention rankings using resampling methods and displayed these graphically.²⁵ We used Stata MP version 18.0 for analysis and analysis code is available in the <https://github.com/JoieEnsor/iWIP-GDM-project> repository.

Patient and public involvement

Members of the public were involved in prioritising the research question, and developing, designing, and managing the research. The study was supported by The Hildas (<https://www.dhlnetwork.com/news>), a dedicated patient and public involvement group in women's health. The team members were involved in the interpretation and reporting of the results.

Results

We included 104 randomised trials involving 35 993 women. Individual participant data were available for 68% of all participants (24 391 women, 54 trials). Fifty trials (11 602 women) did not have IPD available and contributed only aggregate data (fig 1).

Characteristics of included studies

Overall, 48 trials were conducted in Europe (33/48 shared IPD), 24 in North America (9/24 shared IPD),

10 in Australia (8/10 shared IPD), and 6 in South America (4/6 shared IPD). Of the 54 trials that shared IPD, most were randomised trials with individual participant allocation (51/54, 94%), while three were cluster randomised trials.²⁶⁻²⁸ In the studies that contributed IPD, participants had an average age of 29 years (standard deviation 6.0), 81% were white, 50% were nulliparous, 49% held a higher education degree, and 10% had a previous diagnosis of gestational diabetes (table 1). Eleven IPD trials included only women with obesity,^{9 29-38} 10 included both women with obesity and those who were overweight,³⁹⁻⁴⁸ four studies included only overweight women,^{27 49-51} and 29 included women of any body mass index.^{11 26 28 52-77} The physical activity based interventions included water aerobics, fitness sessions or exercise programmes and strength training with or without trainer supervision in 18 IPD trials (36 total).^{29 31 42 47 48 54 57 59 60 65 69 70 71 73 75 78} Diet based interventions included the Mediterranean diet, a cholesterol lowering diet and basic dietary advice on gestational weight gain in eight IPD trials (18 total),^{35 38 46 53 61 66 76 77} and a mixed approach involving advice on physical activity diet, or behaviour changing techniques in 28 IPD trials (52 total).^{9 11 26 27 28 30 32 33 34 36 37 39-41 43 44 45 49-52 62-64 67 68 72 74} Three trials had a three arm design, with intervention arms being different types of counselling or diet, or different exercise routines.^{30 33 35} Fifty four trials (23 361 women) provided IPD on gestational diabetes as defined by any criteria (total 104 studies 35 541 women), 22 IPD trials (11 990 women) according to NICE criteria (total 23 studies, 12 041 women), and 16 IPD trials (6174 women) according to IADPSG criteria (total 29 studies, 8626 women). Supplementary web appendix 4 provides the characteristics of all IPD studies included in the meta-analysis and studies contributing aggregate data only. Supplementary web appendix 5 provides components of the interventions of all IPD studies classified using the TIDieR framework.¹⁹

Quality of included studies

The global risk of bias was low in about two thirds of all eligible studies (64%, 67/104) (supplementary web appendix 6). More IPD studies had low risk of bias for random sequence generation than those without IPD availability (91% v 76%), allocation concealment (61% v 56%), masking of outcome assessment (41% v 34%), and completeness of outcome data (89% v 86%). Figure 2 shows the summary of the risk of bias rating by domain for all eligible studies.

Effects on gestational diabetes

Gestational diabetes defined by any criteria

Our IPD meta-analysis of overall lifestyle interventions showed a 10% reduction in the odds of gestational diabetes (odds ratio 0.90, 95% CI 0.80 to 1.02, $\tau^2=0.04$, 54 studies, 23 361 women) with an absolute risk reduction of 1.3% (95% CI -0.3% to 2.6%) equivalent to 13 fewer women with gestational diabetes per 1000

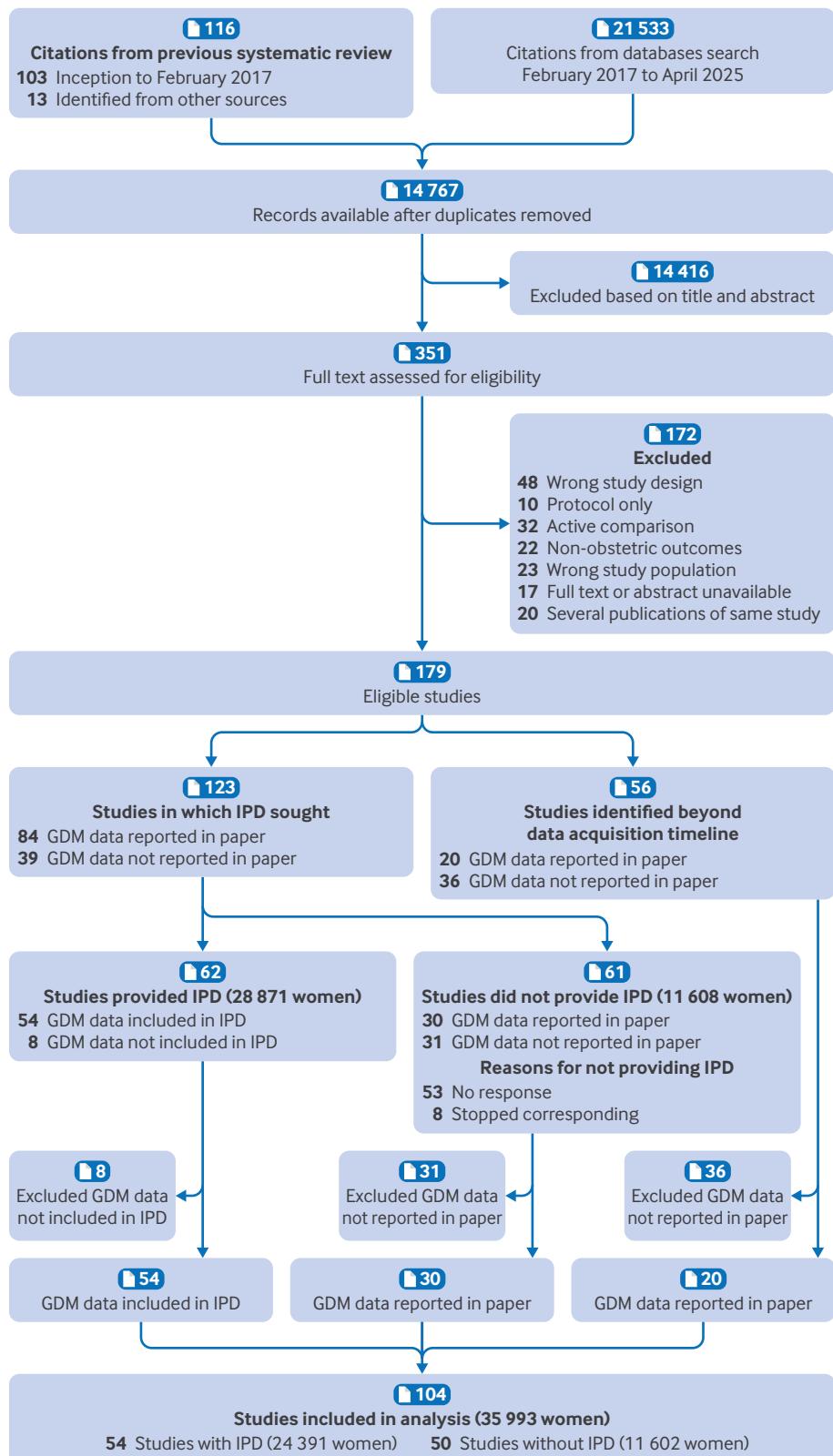


Fig 1 | Identification and selection of studies included in individual participant data (IPD) meta-analysis of effects of lifestyle interventions on gestational diabetes (GDM)

women (95% CI 26 fewer to 3 more). Addition of aggregate data from the non-IPD trials (12 180 women, 50 trials) to the meta-analysis resulted in a larger reduction in the odds of gestational diabetes (odds

ratio 0.80, 95% CI 0.73 to 0.88, $\tau^2=0.07$, 104 studies, 35 541 women; table 2), absolute risk reduction 2.6% (95% CI 1.6% to 3.6%) equivalent to 26 fewer women with gestational diabetes per 1000 women (95% CI

Table 1 | Baseline characteristics of women included in individual participant data meta-analysis of effects of lifestyle interventions on gestational diabetes

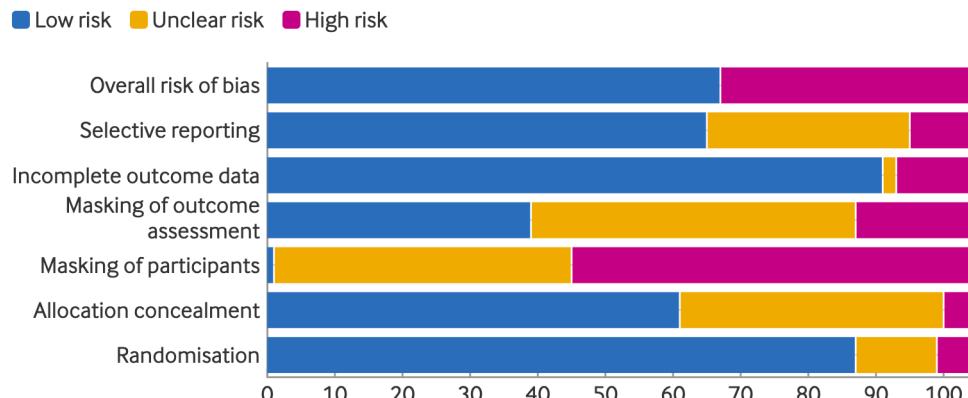
Baseline characteristics	No of studies (No of women)	Study arm	
		Control (n=11 160)	Intervention (n=12 538)
Age (years), mean (SD)	53 (23 607)	29.5 (6.0)	29.4 (6.0)
<20	—	548 (4.9)	649 (5.2)
≥20	—	10 566 (95.1)	11 844 (94.8)
Height (cm), mean (SD)	51 (21 560)	163.3 (7.1)	163.5 (7.0)
Weight (kg), mean (SD)	38 (15 977)	78.6 (18.4)	78.2 (18.2)
Body mass index, mean (SD)	54 (23 698)	28.0 (6.2)	27.9 (6.2)
Normal	—	4330 (38.8)	4898 (39.1)
Overweight	—	2977 (26.7)	3385 (27.0)
Obese	—	3853 (34.5)	4255 (33.9)
Race or ethnicity	35 (12 649)	—	—
White	—	4995 (80.7)	5294 (81.9)
Asian	—	497 (8.0)	488 (7.6)
Black	—	407 (6.6)	398 (6.2)
Central or South American	—	87 (1.4)	77 (1.2)
Middle Eastern	—	79 (1.3)	75 (1.2)
Other	—	122 (2.0)	130 (2.0)
Educational status of mother ^t	35 (11 719)	—	—
Low	—	1108 (19.5)	997 (16.5)
Middle	—	1881 (33.2)	1979 (32.7)
High	—	2682 (47.3)	3072 (50.8)
Smoking status	—	—	—
Current smoker	44 (18 330)	842 (9.6)	851 (8.9)
Previous smoker (before pregnancy)	24 (9969)	1494 (32.3)	1624 (30.4)
Gestational age at randomisation, mean (SD)	39 (18 820)	12.5 (4.6)	12.5 (4.2)
Parity	45 (21 561)	—	—
0	—	4931 (48.7)	5836 (50.6)
1	—	3317 (33.1)	3704 (32.1)
2	—	1180 (11.8)	1328 (11.5)
3	—	376 (3.7)	429 (3.7)
>4	—	231 (2.3)	229 (2.0)
Underlying medical condition	—	—	—
Previous gestational diabetes	19 (5802)	289 (9.9)	287 (10.0)
Previous hypertension in pregnancy	41 (17 926)	914 (10.8)	1015 (10.8)
Chronic hypertension	41 (5654)	50 (2.1)	76 (2.4)

Values are numbers (percentages) unless stated otherwise. SD=standard deviation.

^tLow=not completed secondary education to A level; medium=completed secondary education (A level equivalent); high=further or higher education.

36 fewer to 16 fewer). The beneficial effect of overall lifestyle interventions remained when we excluded IPD and non-IPD trials at high risk of bias in the sensitivity analysis (odds ratio 0.87, 95% CI 0.78 to 0.97, $\tau^2=0.05$, 68 studies, 24 566 women), but not when high risk of bias IPD trials alone were excluded (supplementary web appendix 7).

Among the types of interventions, IPD meta-analysis showed reductions in gestational diabetes with physical activity based (odds ratio 0.64, 95% CI 0.48 to 0.84, $\tau^2=0.04$, 18 studies, 4435 women; absolute risk reduction 4.9%, 95% CI 2.1% to 7.2%) and diet based interventions (odds ratio 0.81, 95% CI 0.69 to 0.96, $\tau^2=0.00$, eight studies, 2974 women; absolute risk reduction 2.5%, 95% CI 0.51% to 4.2%), but not with mixed interventions (odds ratio 1.05, 95% CI 0.91 to 1.21, $\tau^2=0.02$, 28 studies, 15 952 women). We observed the beneficial effects to persist for physical activity based (odds ratio 0.64, 95% CI 0.53 to 0.76, $\tau^2=0.03$, 36 studies, 9683 women; absolute risk reduction 4.9%, 95% CI 3.2% to 6.4%) and diet based interventions (odds ratio 0.78, 95% CI 0.62 to 0.99, $\tau^2=0.06$, 18 studies, 5144 women; absolute risk


reduction 2.9%, 95% CI 0.1% to 5.1%) when non-IPD trials were added (table 2). The beneficial effect for physical activity based interventions remained when we removed high risk of bias IPD studies (odds ratio 0.59, 95% CI 0.43 to 0.82, $\tau^2=0.00$, 11 studies, 2993 women), and high risk of bias non-IPD studies (odds ratio 0.67, 95% CI 0.55 to 0.82, $\tau^2=0.00$, 22 studies, 6967 women) from the analyses, but the findings varied for diet based and mixed interventions (supplementary web appendix 7).

Gestational diabetes defined by NICE criteria

Lifestyle interventions did not reduce the odds of gestational diabetes defined by NICE criteria in the IPD meta-analysis (odds ratio 0.98, 95% CI 0.84 to 1.13, $\tau^2=0.02$, 22 studies, 11 990 women; absolute risk reduction 0.3%, 95% CI -1.6% to 2.1%) or when non-IPD trials were added to the IPD meta-analysis (odds ratio 0.98, 95% CI 0.85 to 1.14, $\tau^2=0.02$, 23 studies, 12 041 women; absolute risk reduction 0.3%, 95% CI -1.8% to 2.0%). Because of wide confidence intervals, it remains unclear whether reductions in gestational diabetes occur for specific interventions

Summary of risk of bias assessment in all eligible studies (n=104)

thebmj

Article DOI: 10.1136/bmj-2025-084159 • Download data

Fig 2 | Summary of risk of bias assessment in all eligible studies (n=104). An interactive version of this graphic and downloadable data are available at <https://public.flourish.studio/visualisation/26236883/>

such as physical activity (odds ratio 0.65, 95% CI 0.18 to 2.31, $\tau^2=0.60$, five studies, 977 women; absolute risk reduction 4.7%, 95% CI -14.0% to 11.9%) and diet (odds ratio 0.71, 95% CI 0.33 to 1.49, $\tau^2=0.00$, three studies, 1812 women; absolute risk reduction 3.9%, 95% CI -5.8% to 9.5%), although reductions from using mixed interventions are unlikely (odds ratio 1.10, 95% CI 0.98 to 1.23, $\tau^2=0.00$, 14 studies, 9201 women; table 2). Findings are similar from the sensitivity analyses that excluded high risk of bias studies (supplementary web appendix 7).

Gestational diabetes defined by IADPSG and modified IADPSG criteria

The odds of gestational diabetes defined by IADPSG criteria were reduced by lifestyle interventions compared with usual care in the IPD meta-analysis (odds ratio 0.86, 95% CI 0.75 to 0.97, $\tau^2=0.00$, 16 studies, 6174 women) with an absolute risk reduction of 2.7% (95% CI 0.6% to 5.0%), equivalent to 27 fewer women with gestational diabetes per 1000 women (95% CI 50 fewer to 6 fewer) for a 25% baseline risk of gestational diabetes when using the IADPSG criteria. The reduction persisted when non-IPD trials were added to the analysis (odds ratio 0.82, 95% CI 0.72 to 0.93, $\tau^2=0.01$, 29 studies, 8626 women; absolute risk reduction 3.5%, 95% CI 1.3% to 5.7%; table 3). Among individual interventions, a reduction in IADPSG defined gestational diabetes was observed for mixed interventions (odds ratio 0.83, 95% CI 0.71 to 0.96, $\tau^2=0.00$, 17 studies, 5892 women; absolute risk reduction 3.3%, 95% CI 0.8% to 5.9%) when non-IPD trials were added to the IPD meta-analyses, but there was no clear evidence for other types of interventions (table 3). There were no clear differences between

the groups for overall or individual interventions for gestational diabetes defined by modified IADPSG criteria (table 3).

The contour enhanced funnel plots did not show clear evidence of asymmetry for the IPD meta-analysis of gestational diabetes defined by any criteria and by NICE criteria. The findings were consistent when non-IPD trials were added, and when high risk of bias IPD trials were excluded (supplementary web appendix 8).

Differential effects of lifestyle interventions

We did not find a treatment-covariate interaction effect for maternal characteristics like body mass index, age, parity, and ethnicity in reducing gestational diabetes by any criteria. However, women with low educational levels were less likely to benefit than those with middle and high educational levels (low v middle interaction: odds ratio 0.68, 95% CI 0.51 to 0.90, $\tau^2=0.00$; low v high interaction: odds ratio 0.71, 95% CI 0.54 to 0.93, $\tau^2=0.00$). But the intervention was beneficial within all three educational level subgroups (table 4). No such differences were observed for gestational diabetes defined by NICE criteria (table 4). Our subgroup analyses by intervention components did not show differences in the effects by frequency, intensity, mode of delivery, timing, facilitator type, or setting. Interventions delivered in group formats (odds ratio 0.81, 95% CI 0.68 to 0.97; absolute risk reduction 2.5%, 95% CI 0.4% to 4.3%) and by newly trained providers (odds ratio 0.82, 95% CI 0.69 to 0.96; absolute risk reduction 2.4%, 95% CI 0.5% to 4.2%) showed greater benefits than individual formats and providers with previous training (supplementary web appendix 9).

Table 2 | Effects of lifestyle interventions on gestational diabetes defined by any criteria and NICE criteria summarised using IPD alone and by supplementing IPD with study level data from studies that did not contribute IPD

Intervention and source	No of studies (No of women)	Odds ratio (95% CI)	95% PI	τ^2 (95% CI)
Any criteria				
Physical activity				
IPD only	18 (4435)	0.64 (0.48 to 0.84)	0.39 to 1.05	0.04 (0.00 to 0.43)
IPD and aggregate data	36 (9683)	0.64 (0.53 to 0.76)	0.42 to 0.97	0.30 (0.00 to 0.23)
Diet				
IPD only	8 (2974)	0.81 (0.69 to 0.96)	0.68 to 0.97	0.00 (0.00 to 0.17)
IPD and aggregate data	18 (5144)	0.78 (0.62 to 0.99)	0.44 to 1.38	0.06 (0.00 to 0.35)
Mixed				
IPD only	28 (15 952)	1.05 (0.91 to 1.21)	0.78 to 1.40	0.02 (0.00 to 0.12)
IPD and aggregate data	52 (20 714)	0.92 (0.82 to 1.04)	0.60 to 1.41	0.04 (0.00 to 0.14)
All				
IPD only	54 (23 361)	0.90 (0.80 to 1.02)	0.59 to 1.38	0.04 (0.01 to 0.13)
IPD and aggregate data	104 (35 541)	0.80 (0.73 to 0.88)	0.47 to 1.37	0.07 (0.03 to 0.15)
NICE criteria				
Physical activity				
IPD only	5 (977)	0.65 (0.18 to 2.31)	0.04 to 11.49	0.60 (0.00 to 8.8)
IPD and aggregate data	5 (977)	0.65 (0.18 to 2.31)	0.04 to 11.49	0.60 (0.00 to 8.8)
Diet				
IPD only	3 (1812)	0.70 (0.33 to 1.49)	0.08 to 6.47	0.00 (0.00 to 2.8)
IPD and aggregate data	4 (1863)	0.72 (0.41 to 1.27)	0.33 to 1.55	0.00 (0.00,2.68)
Mixed				
IPD only	14 (9201)	1.10 (0.98 to 1.23)	0.99,1.24	0.00 (0.00 to 0.06)
IPD and aggregate data	14 (9201)	1.10 (0.98 to 1.23)	0.99,1.24	0.00 (0.00 to 0.06)
All				
IPD only	22 (11 990)	0.98 (0.84 to 1.13)	0.70 to 1.36	0.02 (0.00 to 0.13)
IPD and aggregate data	23 (12 041)	0.98 (0.85 to 1.14)	0.71 to 1.33	0.017(0.00 to 0.12)

CI=confidence interval; IPD=individual participant data; NICE=National Institute for Health and Care Excellence; PI=prediction interval.

Effects on maternal and offspring outcomes

IPD meta-analyses of trials reporting gestational diabetes defined by any criteria did not provide clear evidence that lifestyle interventions reduce adverse pregnancy outcomes like hypertensive diseases, preterm birth, caesarean section, stillbirth, and small or large for gestational age babies. Among the types of interventions, physical activity based ones statistically significantly reduced the odds of caesarean section (odds ratio 0.83, 95% CI 0.72 to 0.96, $\tau^2=0.00$, 17 studies, 4527 women; absolute risk reduction 3.8%, 95% CI 0.9% to 6.4%), small for gestational age (odds ratio 0.72, 95% CI 0.56 to 0.92, $\tau^2=0.00$, 17 studies, 4594 women; absolute risk reduction 1.9%, 95% CI 0.5% to 3.0%), and large for gestational age babies (odds ratio 0.81, 95% CI 0.71 to 0.94, $\tau^2=0.00$, 17 studies, 4594 women; absolute risk reduction 2.7%, 95% CI 0.8% to 4.2%); no clear differences were observed for other outcomes. Diet based interventions reduced the odds of preterm birth (odds ratio 0.37, 95% CI 0.20 to 0.68, $\tau^2=0.0$, six studies, 1464 women; absolute risk reduction 6.6%, 95% CI 3.3% to 8.6%) compared with controls, with no clear reductions in other outcomes. No clear differences were observed for any maternal or offspring outcomes with mixed interventions (table 5).

Network meta-analysis

A connected network was formed for gestational diabetes defined by any criteria, with minor heterogeneity between studies ($\tau=0.10$; fig 3).

Indirect intervention effects showed a reduction in the odds of gestational diabetes by 39% on average (odds ratio 0.61, 95% CI 0.46 to 0.83; absolute risk reduction 5.3%, 95% CI 2.2% to 7.5%) with physical activity based interventions compared with mixed interventions (table 6). Physical activity based interventions had the highest mean rank (1.1, 95% CI 1 to 2) and the highest probability of being ranked best intervention (89%), while mixed interventions had the lowest mean rank (3.8, 95% CI 3 to 4) and the highest probability of being ranked worst intervention (78.6%) (supplementary web appendix 10). We were unable to statistically test the consistency assumption owing to the geometry of the network.

Discussion

Principal findings

The effects of lifestyle interventions in pregnancy on gestational diabetes vary by the diagnostic criteria used in clinical practice. The effects differed by maternal education and not by maternal body mass index, age, parity, or ethnicity. Although reductions in gestational diabetes were observed across all educational levels, the magnitude of the benefit was less in mothers with low education level. The effects were consistent across intervention characteristics, but benefits were greater when delivered in group formats and by newly trained providers. Physical activity based interventions appear to be the most effective among individual interventions. No differences were observed in maternal and perinatal outcomes in studies on overall lifestyle interventions

Table 3 | Effects of lifestyle interventions on gestational diabetes defined by IADPSG and modified IADPSG criteria summarised using IPD alone and by supplementing IPD with study level data from studies that did not contribute IPD

Intervention and source	No of studies (No of women)	Odds ratio (95% CI)	95% PI	τ^2 (95% CI)
IADPSG criteria				
Physical activity				
IPD only	3 (55)	0.92 (0.28 to 3.08)	0.03 to 32.47	0.00 (0.00 to 13.85)
IPD and aggregate data	5 (420)	0.93 (0.69 to 1.25)	0.66 to 1.31	0.00 (0.00 to 1.44)
Diet				
IPD only	2 (895)	0.71 (0.06 to 7.88)	Undefined	0.00 (0.00 to 14.9)
IPD and aggregate data	7 (2314)	0.81 (0.55 to 1.20)	0.35 to 1.90	0.08 (0 to 0.69)
Mixed				
IPD only	11 (5224)	0.89 (0.76 to 1.03)	0.76 to 1.04	0.00 (0.00 to 0.08)
IPD and aggregate data	17 (5892)	0.83 (0.71 to 0.96)	0.71 to 0.96	0.00 (0.00 to 0.12)
All				
IPD only	16 (6174)	0.86 (0.75 to 0.97)	0.75 to 0.97	0.00 (0.00 to 0.07)
IPD and aggregate data	29 (8626)	0.82 (0.72 to 0.93)	0.64 to 1.04	0.01 (0 to 0.11)
Modified IADPSG criteria				
Physical activity*				
IPD only	7 (1940)	0.88 (0.70 to 1.09)	0.70 to 1.10	0.00 (0.00 to 0.53)
Diet*				
IPD only	3 (1891)	0.64 (0.32 to 1.30)	0.08 to 5.11	0.00 (0.00 to 2.78)
Mixed				
IPD only	14 (9355)	1.08 (0.89 to 1.31)	0.68 to 1.72	0.04 (0.00 to 0.21)
IPD and aggregate data	15 (9622)	1.07 (0.89 to 1.29)	0.69 to 1.67	0.03 (0 to 0.19)
All				
IPD only	24 (13 186)	0.92 (0.78 to 1.10)	0.52 to 1.64	0.07 (0.02 to 0.23)
IPD and aggregate data	25 (13 453)	0.93 (0.79 to 1.09)	0.53 to 1.62	0.07 (0.02 to 0.21)

CI=confidence interval; IADPSG=International Association of Diabetes in Pregnancy Study Group; IPD=individual participant data; PI=prediction interval.

* No additional aggregate data studies available.

reporting gestational diabetes. However, benefits were observed with individual interventions, such as reduction in caesarean section, and risks of small and large for gestational age babies with physical activity, and preterm birth with diet based interventions.

Strengths and limitations

Our large IPD meta-analysis comprised randomised data for more than 24 000 women, resulting in enhanced precision and reliability of findings.¹⁰ By accessing the raw participant data, such as blood glucose levels, we were able to standardise the reported outcomes and assess the effects of interventions on gestational diabetes for various diagnostic criteria.⁷⁹ Access to IPD also provided us with larger power to assess the differential intervention effects across various subgroups, which is not often possible in individual trials or in aggregate data. In addition to relative measures, we reported absolute risk reductions to help clinical interpretation, allowing clinicians and policy makers to better appreciate the potential public health impact of lifestyle interventions. We reported both confidence intervals and prediction intervals for transparency. Our primary interpretation was based on confidence intervals, in keeping with standard meta-analysis reporting conventions and the estimates typically used to guide clinical recommendations and policy.⁸⁰ However, we also considered the prediction intervals in our interpretation, particularly in analyses with wider intervals that indicate potential variation in future settings. The interpretations based on confidence intervals and prediction intervals were similar across analyses, except for two comparisons:

the overall effect of lifestyle interventions (IPD plus non-IPD trials) and physical activity based interventions (IPD alone) for gestational diabetes defined by any criteria. These differences should be taken into account when considering how these findings might translate to different clinical settings. By adding studies that did not contribute IPD to the IPD meta-analysis, we were able to provide the totality of evidence of the magnitude of effect of lifestyle interventions. Moreover, by undertaking sensitivity analyses by excluding lower quality studies, we were able to assess the consistency of the findings. The network meta-analysis allowed us to identify the most effective intervention to make decisions on the choice of interventions in practice.

Our work has limitations. Despite several attempts we were unable to obtain IPD from many trials published up to March 2021. However, our IPD dataset accounted for 68% of all randomised participants across eligible studies. Included studies varied in the characteristics of participants and interventions, but through our subgroup analysis we were able to assess the differential effect in various populations and intervention components. Our network meta-analysis was limited by the absence of closed loops, which prevented formal assessment of consistency. Potential heterogeneity in intervention characteristics and differences in standard care may affect the assumption of transitivity in our network meta-analysis. However, the comparability of populations and our adjustment for key prognostic factors support the plausibility of the transitivity assumption. When examining continuous variables, we assumed linear trends, but further work

Table 4 | Treatment-covariate interaction estimates for lifestyle interventions on gestational diabetes defined by any criteria and NICE criteria in subgroups of pregnant women

Maternal characteristics	No of studies (No of women)	Treatment-covariate interaction		
		Interaction odds ratio (95% CI)	95% PI	τ^2 (95% CI)
Any criteria				
Ethnicity: non-white v white	18 (8733)	0.98 (0.71 to 1.34)	0.71 to 1.34	0.00 (0.00 to 0.41)
Parity: multiparous v nulliparous	40 (19 574)	0.88 (0.75 to 1.03)	0.75 to 1.03	0.00 (0.00 to 0.17)
Education				
Middle v low	33 (10 887)	0.68 (0.51 to 0.90)	0.51 to 0.90	0.00 (0.00 to 0.49)
High v low	32 (10 794)	0.71 (0.54 to 0.93)	0.54 to 0.93	0.00 (0.00 to 0.41)
Age (years)				
≥20 v <20	24 (17 320)	1.00 (0.74 to 1.36)	0.74 to 1.36	0.00 (0.00 to 0.79)
Age (continuous)	52 (23 161)	1.00 (0.98 to 1.02)	0.98 to 1.02	0.00 (0.00 to 0.00)
Baseline body mass index				
Overweight v normal	33 (16 711)	0.98 (0.74 to 1.29)	0.50 to 1.90	0.09 (0.00 to 0.64)
Obese v normal	48 (21 080)	0.90 (0.72 to 1.11)	0.72 to 1.12	0.00 (0.00 to 0.37)
Body mass index (continuous)	54 (23 361)	1.00 (0.98 to 1.02)	0.98 to 1.02	0.00 (0.00 to 0.00)
NICE criteria				
Ethnicity: non-white v white	10 (5736)	0.73 (0.42 to 1.26)	0.34 to 1.57	0.05 (0.00 to 1.30)
Parity: multiparous v nulliparous	14 (9072)	0.98 (0.77 to 1.24)	0.77 to 1.25	0.00 (0.00 to 0.37)
Education				
Middle v low	8 (4312)	1.30 (0.78 to 2.15)	0.77 to 2.19	0.00 (0.00 to 1.12)
High v low	8 (4293)	1.15 (0.68 to 1.96)	0.67 to 1.99	0.00 (0.00 to 1.35)
Age (years)				
≥20 v <20	13 (10 461)	1.15 (0.87 to 1.51)	0.87 to 1.51	0.00 (0.00 to 0.73)
Age (continuous)	22 (11 990)	1.00 (0.99 to 1.02)	0.99 to 1.02	0.00 (0.00 to 0.00)
Baseline body mass index				
Overweight v normal	16 (7965)	1.11 (0.67 to 1.83)	0.34 to 3.56	0.23 (0.00 to 1.43)
Obese v normal	16 (9219)	1.07 (0.69 to 1.68)	0.40 to 2.87	0.17 (0.00 to 1.19)
Body mass index (continuous)	22 (9462)	1.00 (0.99 to 1.02)	0.99 to 1.02	0.00 (0.00 to 0.00)

CI=confidence interval; NICE=National Institute for Health and Care Excellence; PI=prediction interval.

might consider potential non-linear relationships for investigating treatment-covariate interactions.

The interventions varied in duration, intensity, timing, and provider, and we were only able to broadly define them as predominantly physical activity based, diet based, or mixed interventions. The mixed interventions group was heterogeneous, with many trials having unstructured interventions. Not all individual trials systematically collected adherence or compliance data, so we were unable to assess the potential impact of intervention adherence on outcomes in our analyses. A third of trials that shared IPD did not report ethnicity in the data, and for those that did, the populations were mostly white. As a result, we were unable to explore the effects of ethnicity in detailed subcategories in the non-white group because of the wide variation in definitions of race and ethnicity in individual studies. We only reported the effects of lifestyle interventions on maternal and perinatal outcomes in studies that reported on gestational diabetes. The findings are likely to differ when all randomised trials on lifestyle interventions are included. Most trials were conducted in high income countries, limiting the generalisability of our findings to diverse global settings.

Comparison with other studies

For overall lifestyle interventions, no clear evidence was found for a reduction in gestational diabetes across all diagnostic criteria. Although benefits were observed for IADPSG defined gestational diabetes, which has a relatively low threshold for diagnosis,

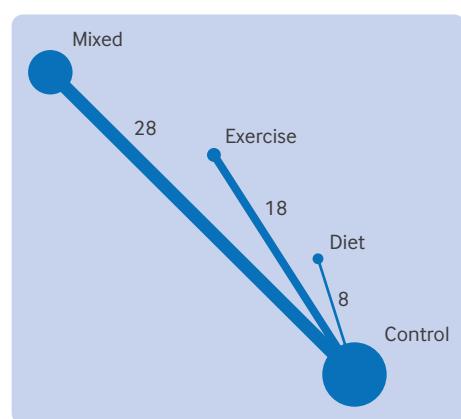
the effects did not extend to NICE defined gestational diabetes. The findings also varied when non-IPD trials were added, and when low quality studies were excluded. In our interpretation of the findings, we considered the intervention to have an impact on an outcome if it consistently showed a benefit across all three analyses: IPD meta-analyses, including non-IPD trials, and excluding studies with high risk of bias. Among individual interventions, we found a consistent reduction in physical activity based interventions for gestational diabetes defined by any criteria in all three analyses.

Physical activity based interventions also ranked the highest among all three intervention types. The highly structured targeted approach of physical activity based interventions probably contributed to the observed large magnitude of effect.⁸¹ In our discussions with stakeholders, patient and public involvement and engagement groups highlighted that women usually stop all physical activity and exercise when found to be pregnant owing to concerns about the impact on pregnancy.⁸² In such a situation, any increase in physical activity is likely to show benefit. Our findings are similar to the observed benefits in preventing type 2 diabetes with physical activity in the general population.⁸³ As in previously published reviews involving pregnant women, we did not observe a beneficial effect with the mixed approach.¹⁰ This could be because of the burden of simultaneous engagement across behaviour change interventions, which may affect adherence and compliance with the intervention

Table 5 | Effects of lifestyle interventions on pregnancy outcomes summarised using individual participant data alone

Outcome and intervention	No of studies (No of women)	Odds ratio (95% CI)	PI	τ^2 (95% CI)
Hypertensive disease				
Physical activity	18 (4620)	0.87 (0.64 to 1.18)	0.42 to 1.79	0.09 (0.00 to 0.86)
Diet	8 (2980)	0.81 (0.55 to 1.17)	0.44 to 1.47	0.04 (0.00 to 0.73)
Mixed	28 (16098)	1.10 (0.97 to 1.24)	0.97 to 1.24	0.00 (0.00 to 0.06)
All	54 (23698)	1.03 (0.92 to 1.14)	0.92 to 1.14	0.00 (0.00 to 0.09)
Preterm birth				
Physical activity	15 (4504)	1.02 (0.78 to 1.34)	0.77 to 1.34	0.00 (0.00 to 0.29)
Diet	6 (1464)	0.37 (0.20 to 0.68)	0.19 to 0.71	0.00 (0.00 to 1.73)
Mixed	24 (14801)	0.95 (0.79 to 1.13)	0.72 to 1.24	0.01 (0.00 to 0.13)
All	45 (20769)	0.93 (0.80 to 1.07)	0.73 to 1.18	0.01 (0.00 to 0.11)
Caesarean section				
Physical activity	17 (4527)	0.83 (0.72 to 0.96)	0.72 to 0.96	0.00 (0.00 to 0.11)
Diet	8 (2829)	0.93 (0.78 to 1.11)	0.71 to 1.22	0.01 (0.00 to 0.38)
Mixed	24 (13178)	0.99 (0.88 to 1.10)	0.71 to 1.37	0.02 (0.00 to 0.09)
All	49 (20534)	0.93 (0.86 to 1.01)	0.73 to 1.19	0.01 (0.00 to 0.05)
Stillbirth				
Physical activity	7 (1218)	1.39 (0.86 to 2.25)	0.83 to 2.30	0.00 (0.00 to 3.57)
Diet	4 (1576)	0.65 (0.25 to 1.66)	0.18 to 2.32	0.00 (0.00 to 8.09)
Mixed	17 (7100)	0.75 (0.57 to 1.01)	0.56 to 1.01	0.00 (0.00 to 0.68)
All	28 (9894)	0.80 (0.64 to 1.01)	0.64 to 1.01	0.00 (0.00 to 0.42)
Small for gestational age				
Physical activity	17 (4594)	0.72 (0.56 to 0.92)	0.56 to 0.92	0.00 (0.00 to 0.27)
Diet	6 (1450)	0.89 (0.17 to 4.74)	0.02 to 48.57	1.65 (0.09 to 11.83)
Mixed	20 (11470)	1.06 (0.94 to 1.20)	0.93 to 1.20	0.00 (0.00 to 0.08)
All	43 (17514)	0.94 (0.82 to 1.09)	0.82 to 1.09	0.00 (0.00 to 0.18)
Large for gestational age				
Physical activity	17 (4594)	0.81 (0.71 to 0.94)	0.69 to 0.97	0.00 (0.00 to 0.11)
Diet	6 (1450)	0.72 (0.46 to 1.14)	0.44 to 1.18	0.00 (0.00 to 0.94)
Mixed	19 (11236)	1.03 (0.92 to 1.16)	0.92 to 1.16	0.00 (0.00 to 0.05)
All	42 (17280)	0.93 (0.85 to 1.02)	0.85 to 1.02	0.00 (0.00 to 0.05)

CI=confidence interval; PI=prediction interval.


in pregnancy.⁸¹ Systematic differences are likely between participants' motivation and willingness to engage in the highly structured physical activity based trials and those with diet or mixed interventions.⁸⁴

The benefits of lifestyle interventions were observed across educational levels, although the magnitude appeared smaller among women with low education. This observation suggests a potential social gradient in effectiveness.^{85 86} We considered education to be a proxy for socioeconomic status.⁸⁷ The reach, uptake, and adherence to lifestyle interventions are likely to be affected by barriers encountered by women from low socioeconomic backgrounds, including the perception of risk, previous negative experiences with lifestyle change, costs of healthy foods and access to gym facilities, neighbourhood safety to undertake physical activity, lack of access to e-health interventions, time constraints, and social pressures.^{88 89} These factors may limit their ability to engage fully with interventions.

Policy implications

Addressing maternal health inequities requires multilevel interventions that extend beyond individual behaviours to tackle the broader structural barriers and social inequities that shape health outcomes. Community based programmes that leverage existing social infrastructure and foster peer-to-peer support may be more successful in reaching marginalised

populations and promoting sustainable lifestyle changes.⁸⁶ Interventions designed with accessibility, cultural relevance, and support structures in mind may enhance engagement across educational groups. Understanding the behavioural, social, and structural determinants of adherence to the intervention is critical to advancing health equity. Although women from ethnic minority backgrounds are at high risk of gestational diabetes, we did not find variations in the

Fig 3 | Network graph of included studies for gestational diabetes defined by any criteria, with thickness of lines and size of circles proportional to number of studies and number of women, respectively

Table 6 | Network meta-analysis results for all possible comparisons summarised using individual participant data alone

Intervention	Control	Physical activity	Diet	Mixed
Control	—	1.55 (1.18 to 2.02)	1.23 (0.98 to 1.55)	0.95 (0.83 to 1.09)
Physical activity	0.65 (0.50 to 0.85)	—	0.80 (0.56 to 1.13)	0.61 (0.46 to 0.83)
Diet	0.81 (0.65 to 1.03)	1.26 (0.88 to 1.79)	—	0.77 (0.59 to 1.01)
Mixed	1.06 (0.92 to 1.21)	1.63 (1.21 to 2.20)	1.30 (0.99 to 1.71)	—

Values are odds ratio (95% confidence interval).

effects of lifestyle interventions between white and non-white mothers. The findings are similar to the observed lack of differential effect of lifestyle interventions by ethnicity in preventing type 2 diabetes in the general population.⁹⁰ We also did not find any variations in the effects of lifestyle interventions by maternal body mass index, age, or parity. Therefore, lifestyle interventions may benefit all women across maternal subgroups, irrespective of their baseline characteristics.

Although some characteristics of intervention delivery such as group based sessions and delivery by newly trained providers may enhance effectiveness, we found that lifestyle interventions offer benefit irrespective of how they are delivered. There is no one-size-fits-all approach, and the belief that a specific type, intensity, or format of lifestyle intervention is necessary to prevent gestational diabetes is not supported by our findings. While the size of benefit may vary, providing any form of lifestyle intervention is better than doing nothing. These findings support integrating lifestyle interventions into routine antenatal care as a practical and scalable strategy to improve outcomes.

The current focus in countries continues to be on early diagnosis and treatment of gestational diabetes.⁹¹ Practice level protocols and policy level guidance targeting pregnancy for preventing gestational diabetes are lacking. National programmes like the Diabetes Prevention Programme in the UK do not include the prevention of gestational diabetes.⁹² Clear policies are needed that highlight the benefits of lifestyle interventions in pregnancy. The conversations around lifestyle should be part of routine antenatal care. In particular, women should be reassured about the safety of physical activity interventions, and informed that any activity should be better than none. Access to green and blue spaces and financial support such as healthy start vouchers given in the UK will encourage women to improve their physical activity and diet.^{93 94} Given the high prevalence of gestational diabetes and associated risks of short and long term complications in mothers and babies, even a small shift in the population distribution could have substantial public health benefits.

Research implications

Future studies are needed on the barriers and facilitators at individual, interpersonal, community, organisational, and policy levels to help guide adaptations to optimise engagement and outcomes across diverse populations. Use of technology in delivery of lifestyle interventions may bring down the cost of delivering interventions at scale.⁹⁵ A recent

study found that women from lower socioeconomic groups found a specifically designed smart phone application helpful in their engagement with a dietary and physical activity intervention.⁹⁶ However, the effectiveness and acceptability of technology enabled solutions will need to be rigorously assessed once developed and deployed.⁹⁷ Disaggregated ethnicity data should be collected and reported in individual studies to better explore generalisability of findings and ensure interventions do not widen the inequality gap.^{98 99}

Future studies could also examine duration of follow-up as a potential effect modifier, which we were unable to assess in our prespecified analyses. Well designed follow-up studies are needed to assess the long term impact of lifestyle interventions in pregnancy on the metabolic health of mothers and their babies. A pressing need exists for high quality trials in low and middle income countries where the burden of gestational diabetes is rapidly rising but resources for intervention may be limited.¹⁰⁰ Future research should focus on implementation science approaches to inform translation of these findings into equitable, culturally appropriate, and scalable interventions embedded within supportive health systems and policy environments.

Conclusion

Lifestyle interventions in pregnancy are likely to prevent gestational diabetes, with effects varying by diagnostic criteria used. Benefits were smaller among women with lower education, highlighting equity gaps. Interventions delivered in group formats and by newly trained providers enhanced effectiveness. Physical activity based interventions were most effective. Implementation strategies should aim to prioritise equitable access and optimise delivery to maximise impact.

AUTHOR AFFILIATIONS

¹Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK

²WHO Collaborating Centre for Global Women's Health, Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK

³Department of Applied Health Science, College of Medical and Health, University of Birmingham, Birmingham, UK

⁴National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, UK

⁵Unidad de Bioestadística Clínica del Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain

⁶Physical Activity for Health Research Centre, University of Edinburgh, Edinburgh, UK

⁷Yunnan Maternal and Child Health Care Hospital, Kunming, Yunnan, China

⁸School of Health and Wellbeing, University of Glasgow, Glasgow, UK

⁹Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK

¹⁰School of Life Course and Population Sciences, King's College London, London, UK

¹¹Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

¹²Universidad Europea del Atlántico, Santander, Spain

¹³Serena Tonstad, Oslo University Hospital, Oslo, Norway

¹⁴University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, USA

¹⁵Department of Obstetrics and Gynecology, University of Campinas, Campinas, Brazil

¹⁶University of Modena and Reggio Emilia, Modena, Italy

¹⁷Faculty of Nursing and Midwifery, Mazandaran University of Medical Sciences, Sari, Iran

¹⁸Department of Gynecology, Fertility and Obstetrics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark

¹⁹Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

²⁰School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia

²¹Steno Diabetes Center, Odense University Hospital, Odense, Denmark

²²Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark

²³Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark

²⁴Monash Centre for Health Research and Implementation, School of Public Health, Monash University, Melbourne, Victoria, Australia

²⁵Endocrinology and Nutrition Department, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain

²⁶Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Madrid, Spain

²⁷UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland

²⁸Institute of Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany

²⁹Universidad Politécnica de Madrid, Madrid, Spain

³⁰The Centre for Childhood Health, Nono Nordisk, Denmark

³¹Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA

³²Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland

³³Redcliffe Hospital, Redcliffe, Queensland, Australia

³⁴Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia

³⁵Division of Women's Health, Women's Health Academic Centre, King's College London, St Thomas' Hospital, London, UK

³⁸Department of Reproductive and Health Research, World Health Organization, Geneva, Switzerland

³⁷Katies Team, Patient and Public Representative, London, UK

³⁸Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK

³⁹Women's and Children's Health Services, Barts Health NHS Trust, London, UK

⁴⁰CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain

⁴¹Liverpool Women's NHS Foundation Trust, Liverpool, UK

⁴²NIHR Northwest Coast Applied Research Collaboration, Liverpool, UK

The authors acknowledge all researchers who contributed data to this individual participant data (IPD) meta-analysis, including the original teams involved in the collection of the data, and participants who took part in the research studies. The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

The authors thank members of the independent steering committee, including Jane Daniels (chairperson, University of Nottingham), Michelle Mottola (Western University), Hema Mistry (University of Warwick), Rachel Plachinski (patient and public involvement), Uma Ram (Seethapathy Clinic and Hospital), and Anneke Damen (University Medical Center Utrecht) for their guidance and support throughout the project.

i-WIP Collaborative Group: Kelly Allison, Ellen Althuizen, Alka Kothari, Carla Assaf-Balut, Arne Astrup, Erica Baciu, Ruben Barakat, Isabelle Marc, Annick Bogaerts, Jose Guilherme Cecatti, José F Cordero, Gustaaf Dekker, Roland Devlieger, Jodie M Dodd, Nermean El Beltagy, Fabio Faccinetti, María Luisa Garmendia, Kirsti Krohn Garnaes, Nina RW Geiker, Kym Guelfi, Isabelle Guelinckx, Lene AH Haakstad, Cheryce Harrison, Hans Hauner, Marquis Hawkins, Amy Hui, Kirby Jeffries, Dorte M Jensen, Maria Kennelly, Janette Khoury, Julia Kunath, Riitta Luoto, Elizabeth McCarthy, Fionnuala McAuliffe, Narges Sadat Motahari-Tabari, Siv Mørkved, Fernanda Surita, Simony Lira do Nascimento, Carrie Nobles, Chrsitine M Olson, Ming Jing Ong, Nicolette Oostdam, Mireia Peleaz, María Perales, Elisabetta Petrella, Suzanne Phelan, Lucilla Poston, Julie Owens, Kathrin Rauh, Kristina Renault, Kristiina Rono, Jonatan Ruiz, Linda R Sagedal, Kjell Å Salvesen, Tânia T Scudeller, Alexis Shub, Garry X Shen, Signe N Stafne, Tarja I Kinnunen, Helena Teede, Serena Tonstad, Mireille van Poppel, Christina Vinter, Ingvild Vistad, Jennifer Walsh, Jane Willcox, S Wolff, Seonae Yeo.

Contributors: JA, DC, JZ, TR, NH, GAH, SAS, KN, LP, APB, NM, RM, SI, FA, HT, RDR, and ST developed the protocol. DC, AB, VK, MZ, HM, MBK, and GM carried out the literature search, study selection, and data extraction. DC and JA led the project, acquired the IPD, mapped the variables, cleaned and quality checked the data. DC, JE, GRC, COO, MM, TR, JZ, and RDR conducted data analysis. LP, HT, CH, KJG, ST, SAY, JGC, FF, SMT, KMR, DMJ, ALCP, FMM, HH, RB, NRWG, CAV, SP, TIK, and AK contributed data and provided input at all stages of the project. JA and ST wrote the initial report draft. All authors critically appraised the final draft of the report. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. JA is the guarantor.

Funding: This study was funded by the National Institute for Health Research (NIHR) Health Technology Assessment UK programme (NIHR129715). ST is supported by the NIHR Applied Research Collaboration North West Coast at NHS Cheshire and Merseyside ICB and the University of Liverpool. JE and RDR are supported by the NIHR Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham. RDR and ST are NIHR senior investigators. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. The funders of the study had no role in study design, data collection, data analysis, data interpretation, writing of the report, or the decision to submit. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/disclosure-of-interest/ and declare: support from the National Institute for Health Research (NIHR) Health Technology Assessment UK programme, NIHR Applied Research Collaboration North West Coast at NHS Cheshire and Merseyside ICB, University of Liverpool, NIHR Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, and University of Birmingham for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: This individual participant data meta-analysis did not require ethical approval.

Data sharing: All data requests should be submitted to the corresponding author. Access to available anonymised data may be granted after review and appropriate agreements being in place.

Transparency: The lead author (the manuscript's guarantor) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Dissemination to participants and related patient and public communities: Findings were disseminated to key stakeholders including patients and members of the public at a workshop event. We will work with our patient and public involvement group to develop an animated lay summary of the study findings. A written lay

summary has also been prepared for the funder and is provided in the supplementary material.

Provenance and peer review: Not commissioned; externally peer reviewed.

This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: <http://creativecommons.org/licenses/by/4.0/>.

- 1 Diabetes Atlas IDF. Prevalence of gestational diabetes mellitus (GDM). %. <https://diabetesatlas.org/data-by-indicator/hyperglycaemia-in-pregnancy-hip-20-49-y/prevalence-of-gestational-diabetes-mellitus-gdm/> 2021.
- 2 Diabetes in pregnancy: management from preconception to the postnatal period. NICE guideline [NG3] 25 February 2015; last updated 16 December 2020. <https://www.nice.org.uk/guidance/ng3>
- 3 Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. *Diabetes Care* 2007;30:2070-6. doi:10.2337/dc06-2559a
- 4 Quintanilla Rodriguez BS, Mahdy H. *Gestational Diabetes*. StatPearls, 2023.
- 5 Wang H, Li N, Chivese T, et al. IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group's Criteria. *Diabetes Res Clin Pract* 2022;183:109050. doi:10.1016/j.diobres.2021.109050
- 6 Diabetes prevention programmes: evidence review. 2015. <https://www.gov.uk/government/publications/diabetes-prevention-programmes-evidence-review>
- 7 Shepherd E, Gomersall JC, Tieu J, Han S, Crowther CA, Middleton P. Combined diet and exercise interventions for preventing gestational diabetes mellitus. *Cochrane Database Syst Rev* 2017;11:CD010443. doi:10.1002/14651858.CD010443.pub3
- 8 Rogozińska E, Marlin N, Jackson L, et al. Effects of antenatal diet and physical activity on maternal and fetal outcomes: individual patient data meta-analysis and health economic evaluation. *Health Technol Assess* 2017;21:1-158. doi:10.3310/hta21410
- 9 Poston L, Bell R, Croker H, et al. UPBEAT Trial Consortium. Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): a multicentre, randomised controlled trial. *Lancet Diabetes Endocrinol* 2015;3:767-77. doi:10.1016/S2213-8587(15)00227-2
- 10 Teede HJ, Bailey C, Moran LJ, et al. Association of antenatal diet and physical activity-based interventions with gestational weight gain and pregnancy outcomes: a systematic review and meta-analysis. *JAMA Intern Med* 2022;182:106-14. doi:10.1001/jamainternmed.2021.6373
- 11 Dodd JM, Deussen AR, Louise J. A randomised trial to optimise gestational weight gain and improve maternal and infant health outcomes through antenatal dietary, lifestyle and exercise advice: the OPTIMISE randomised trial. *Nutrients* 2019;11:2911. doi:10.3390/nu1122911
- 12 Coomar D, Hazlehurst JM, Austin F, et al. International Weight Management in Pregnancy (i-WIP) Collaborative Group. Diet and physical activity in pregnancy to prevent gestational diabetes: protocol for an individual participant data (IPD) meta-analysis on the differential effects of interventions with economic evaluation. *BMJ Open* 2021;11:e048119. doi:10.1136/bmjopen-2020-048119
- 13 International Weight Management in Pregnancy (i-WIP) Collaborative Group. Effect of diet and physical activity based interventions in pregnancy on gestational weight gain and pregnancy outcomes: meta-analysis of individual participant data from randomised trials. *BMJ* 2017;358:j3119. doi:10.1136/bmj.j3119
- 14 Sweeting A, Wong J, Murphy HR, Ross GP. A clinical update on gestational diabetes mellitus. *Endocr Rev* 2022;43:763-93. doi:10.1210/endrev/bnac003
- 15 Stewart LA, Clarke M, Rovers M, et al. Preferred Reporting Items for a Systematic Review and Meta-analyses of Individual Participant Data: the PRISMA-IPD statement. *JAMA* 2015;313:1657. doi:10.1001/jama.2015.3656
- 16 Metzger BE, Gabbe SG, Persson B, et al. International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. *Diabetes Care* 2010;33:676-82. doi:10.2337/dc10-0719
- 17 Rogozinska E, D'Amico MI, Khan KS, et al. International Weight Management in Pregnancy (iWIP) Collaborative Group. Development of composite outcomes for individual patient data (IPD) meta-analysis on the effects of diet and lifestyle in pregnancy: a Delphi survey. *BJOG* 2016;123:190-8. doi:10.1111/1471-0528.13764
- 18 Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8. Assessing risk of bias in a randomized trial. *Cochrane Handbook for Systematic Reviews of Interventions*. 2019 doi:10.1002/9781119536604.ch8.
- 19 Hoffmann TC, Glasziou PP, Boutron I, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. *BMJ* 2014;348:g1687. doi:10.1136/bmj.g1687
- 20 Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. *Stat Med* 2001;20:3875-89. doi:10.1002/sim.1009
- 21 Skoetz N, Goldkuhle M, van Dalen EC, et al. GRADE Working Group. GRADE guidelines 27: how to calculate absolute effects for time-to-event outcomes in summary of findings tables and evidence profiles. *J Clin Epidemiol* 2020;118:124-31. doi:10.1016/j.jclinepi.2019.10.015
- 22 Ahmed I, Sutton AJ, Riley RD. Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: a database survey. *BMJ* 2012;344:d7762. doi:10.1136/bmj.d7762
- 23 Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. *J R Stat Soc Ser A Stat Soc* 2009;172:137-59. doi:10.1111/j.1467-985X.2008.00552.x
- 24 White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. *Res Synth Methods* 2012;3:111-25. doi:10.1002/rsm.1045
- 25 White IR. Network meta-analysis. *The Stata Journal* 2015;15:951-85. doi:10.1177/1536867X1501500403
- 26 Garmendia ML, Corvalan C, Araya M, Casanello P, Kusanovic JP, Uauy R. Effectiveness of a normative nutrition intervention in Chilean pregnant women on maternal and neonatal outcomes: the CHIMINCs study. *Am J Clin Nutr* 2020;112:991-1001. doi:10.1093/ajcn/nqaa185
- 27 Luoto R, Kinnunen TI, Aittasalo M, et al. Primary prevention of gestational diabetes mellitus and large-for-gestational-age newborns by lifestyle counseling: a cluster-randomized controlled trial. *PLoS Med* 2011;8:e1001036. doi:10.1371/journal.pmed.1001036
- 28 Rauh K, Gabriel E, Kerschbaum E, et al. Safety and efficacy of a lifestyle intervention for pregnant women to prevent excessive maternal weight gain: a cluster-randomized controlled trial. *BMC Pregnancy Childbirth* 2013;13. doi:10.1186/1471-2393-13-151
- 29 Bisson M, Almères N, Dufresne SS, et al. A 12-week exercise program for pregnant women with obesity to improve physical activity levels: an open randomised preliminary study. *PLoS One* 2015;10:e0137742. doi:10.1371/journal.pone.0137742
- 30 Bogaerts AFL, Devlieger R, Nyuts E, Witters I, Gyselaers W, Van den Berghe BRH. Effects of lifestyle intervention in obese pregnant women on gestational weight gain and mental health: a randomized controlled trial. *Int J Obes (Lond)* 2013;37:814-21. doi:10.1038/ijo.2012.162
- 31 Dekker Nitert M, Barrett HL, Denny KJ, McIntyre HD, Callaway LK, BAMBINO group. Exercise in pregnancy does not alter gestational weight gain, MCP-1 or leptin in obese women. *Aust N Z J Obstet Gynaecol* 2015;55:27-33. doi:10.1111/ajo.12300
- 32 3. Oral Communications. *J Perinat Med* 2013;41(s1):219-89. doi:10.1515/jpm-2013-2002.
- 33 Guelincx I, Devlieger R, Mullie P, Vansant G. Effect of lifestyle intervention on dietary habits, physical activity, and gestational weight gain in obese pregnant women: a randomized controlled trial. *Am J Clin Nutr* 2010;91:373-80. doi:10.3945/ajcn.2009.28166
- 34 Poston L, Briley AL, Barr S, et al. Developing a complex intervention for diet and activity behaviour change in obese pregnant women (the UPBEAT trial): Assessment of behavioural change and process evaluation in a pilot randomised controlled trial. *BMC Pregnancy Childbirth* 2013;13. doi:10.1186/1471-2393-13-148
- 35 Renault KM, Nørgaard K, Nilas L, et al. The Treatment of Obese Pregnant Women (TOP) study: a randomized controlled trial of the effect of physical activity intervention assessed by pedometer with or without dietary intervention in obese pregnant women. *Am J Obstet Gynecol* 2014;210:134.e1-9. doi:10.1016/j.ajog.2013.09.029
- 36 Rönö K, Stach-Lempinen B, Eriksson JG, et al. Prevention of gestational diabetes with a pre pregnancy lifestyle intervention - findings from a randomized controlled trial. *Int J Womens Health* 2018;10:493-501. doi:10.2147/IJWH.S162061
- 37 Vinter CA, Jensen DM, Ovesen P, Beck-Nielsen H, Jørgensen JS. The LiP (Lifestyle in Pregnancy) study: a randomized controlled trial of lifestyle intervention in 360 obese pregnant women. *Diabetes Care* 2011;34:2502-7. doi:10.2337/dc11-1150
- 38 Wolff S, Legarth J, Vangsgaard K, Toubo S, Astrup A. A randomized trial of the effects of dietary counseling on gestational weight gain and glucose metabolism in obese pregnant women. *Int J Obes (Lond)* 2008;32:495-501. doi:10.1038/sj.ijo.0803710

39 Bruno R, Petrella E, Bertarini V, Pedrielli G, Neri I, Facchinetti F. Adherence to a lifestyle programme in overweight/obese pregnant women and effect on gestational diabetes mellitus: a randomized controlled trial. *Matern Child Nutr* 2017;13:e12333. doi:10.1111/mcn.12333

40 Chao AM, Srinivas SK, Stutts SK, Diewald LK, Sarwer DB, Allison KC. A pilot randomized controlled trial of a technology-based approach for preventing excess weight gain during pregnancy among women with overweight. *Front Nutr* 2017;4. doi:10.3389/fnut.2017.00057

41 Dodd JM, Turnbull D, McPhee AJ, et al. Antenatal lifestyle advice for women who are overweight or obese: LIMIT randomised trial. *BMJ* 2014;348:doi:10.1136/bmj.g1285

42 Garnæs KK, Mørkved S, Salvesen Ø, Moholdt T. Exercise training and weight gain in obese pregnant women: a randomized controlled trial (ETIP Trial). *PLoS Med* 2016;13:e1002079. doi:10.1371/journal.pmed.1002079

43 Harrison CL, Lombard CB, Strauss BJ, Teede HJ. Optimizing healthy gestational weight gain in women at high risk of gestational diabetes: a randomized controlled trial. *Obesity (Silver Spring)* 2013;21:904-9. doi:10.1002/oby.20163

44 Hawkins M, Hosker M, Marcus BH, et al. A pregnancy lifestyle intervention to prevent gestational diabetes risk factors in overweight Hispanic women: a feasibility randomized controlled trial. *Diabet Med* 2015;32:108-15. doi:10.1111/dme.12601

45 Kenney MA, Ainscough K, Lindsay KL, et al. Pregnancy exercise and nutrition with smartphone application support a randomized controlled trial. *Obstet Gynecol* 2018;131:818-26. doi:10.1097/AOG.0000000000002582

46 McCarthy EA, Walker SP, Ugoni A, Lappas M, Leong O, Shub A. Self-weighing and simple dietary advice for overweight and obese pregnant women to reduce obstetric complications without impact on quality of life: a randomised controlled trial. *BJOG* 2016;123:965-73. doi:10.1111/1471-0528.13919

47 Nascimento SL, Surita FG, Parpinelli MÂ, Siani S, Pinto e Silva JL. The effect of an antenatal physical exercise programme on maternal/perinatal outcomes and quality of life in overweight and obese pregnant women: a randomised clinical trial. *BJOG* 2011;118:1455-63. doi:10.1111/j.1471-0528.2011.03084.x

48 Oostdam N, van Poppel MNM, Wouters MGAJ, et al. No effect of the FitFor2 exercise programme on blood glucose, insulin sensitivity, and birthweight in pregnant women who were overweight and at risk for gestational diabetes: results of a randomised controlled trial. *BJOG* 2012;119:1098-107. doi:10.1111/j.1471-0528.2012.03366.x

49 Petrella E, Malavolti M, Bertarini V, et al. Gestational weight gain in overweight and obese women enrolled in a healthy lifestyle and eating habits program. *J Matern Fetal Neonatal Med* 2014;27:1348-52. doi:10.3109/14767058.2013.858318

50 Phelan S, Wing RR, Brannen A, et al. Randomized controlled clinical trial of behavioral lifestyle intervention with partial meal replacement to reduce excessive gestational weight gain. *Am J Clin Nutr* 2018;107:183-94. doi:10.1093/ajcn/nqx043

51 Wilcox JC, Wilkinson SA, Lappas M, et al. A mobile health intervention promoting healthy gestational weight gain for women entering pregnancy at a high body mass index: the txt4two pilot randomised controlled trial. *BJOG* 2017;124:1718-28. doi:10.1111/1471-0528.14552

52 Arthur C, Di Corleto E, Ballard E, Kothari A. A randomized controlled trial of daily weighing in pregnancy to control gestational weight gain. *BMC Pregnancy Childbirth* 2020;20:223. doi:10.1186/s12884-020-02884-1

53 Assaf-Balut C, García de la Torre N, Durán A, et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): a randomized controlled trial: The St. Carlos GDM prevention study. *PLoS One* 2017;12:e0185873. doi:10.1371/journal.pone.0185873

54 Baciu EP, Pereira RI, Cecatti JG, Braga AF, Cavalcante SR. Water aerobics in pregnancy: cardiovascular response, labor and neonatal outcomes. *Reprod Health* 2008;5:10. doi:10.1186/1742-4755-5-10

55 Barakat R, Cordero Y, Coteron J, Luaces M, Montejo R. Exercise during pregnancy improves maternal glucose screen at 24-28 weeks: a randomised controlled trial. *Br J Sports Med* 2012;46:656-61. doi:10.1136/bjsports-2011-090009

56 Barakat R, Pelaez M, Cordero Y, et al. Exercise during pregnancy protects against hypertension and macrosomia: randomized clinical trial. *Am J Obstet Gynecol* 2016;214:e649.e1-8. doi:10.1016/j.ajog.2015.11.039

57 Barakat R, Pelaez M, Montejo R, Luaces M, Zakythinaki M. Exercise during pregnancy improves maternal health perception: a randomized controlled trial. *Am J Obstet Gynecol* 2011;204:402.e1-7. doi:10.1016/j.ajog.2011.01.043

58 Barakat R, Refoy I, Coteron J, Franco E. Exercise during pregnancy has a preventative effect on excessive maternal weight gain and gestational diabetes. A randomized controlled trial. *Braz J Phys Ther* 2019;23:148-55. doi:10.1016/j.bjpt.2018.11.005

59 Barakat R, Stirling JR, Lucia A. Does exercise training during pregnancy affect gestational age? A randomised controlled trial. *Br J Sports Med* 2008;42:674-8. doi:10.1136/bjsm.2008.047837

60 Cordero Y, Mottola MF, Vargas J, Blanco M, Barakat R. Exercise is associated with a reduction in gestational diabetes mellitus. *Med Sci Sports Exerc* 2015;47:1328-33. doi:10.1249/MSS.0000000000000547

61 Al Wattar HB, Dodds J, Placzek A, et al. ESTEEM study group. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): a pragmatic multicentre randomised trial. *PLoS Med* 2019;16:e1002857. doi:10.1371/journal.pmed.1002857

62 Hui A, Back L, Ludwig S, et al. Lifestyle intervention on diet and exercise reduced excessive gestational weight gain in pregnant women under a randomised controlled trial. *BJOG* 2012;119:70-7. doi:10.1111/j.1471-0528.2011.03184.x

63 Hui AL, Back L, Ludwig S, et al. Effects of lifestyle intervention on dietary intake, physical activity level, and gestational weight gain in pregnant women with different pre-pregnancy body mass index in a randomized control trial. *BMC Pregnancy Childbirth* 2014;14:331. doi:10.1186/1471-2393-14-331

64 Jeffries K, Shub A, Walker SP, Hiscock R, Permezel M. Reducing excessive weight gain in pregnancy: a randomised controlled trial. *Med J Aust* 2009;191:429-33. doi:10.5694/j.1326-5377.2009.tb02877.x

65 Khaledan A, Motahari S, Tabari NS, Ahmad Shirvani M. Effect of an aerobic exercise program on fetal growth in pregnant women. *Hayat (Tehran)* 2010;16:78.

66 Khouri J, Henriksen T, Christoffersen B, Tonstad S. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. *Am J Obstet Gynecol* 2005;193:1292-301. doi:10.1016/j.ajog.2005.05.016

67 Kunath J, Günther J, Rauh K, et al. Effects of a lifestyle intervention during pregnancy to prevent excessive gestational weight gain in routine care - the cluster-randomised Gelis trial. *BMC Med* 2019;17:5. doi:10.1186/s12916-018-1235-z

68 Olson CM, Groth SW, Graham ML, Reschke JE, Strawderman MS, Fernandez ID. The effectiveness of an online intervention in preventing excessive gestational weight gain: the e-moms roc randomized controlled trial. *BMC Pregnancy Childbirth* 2018;18:148. doi:10.1186/s12884-018-1767-4

69 Ong MJ, Guelfi KJ, Hunter T, Wallman KE, Fournier PA, Newnham JP. Supervised home-based exercise may attenuate the decline of glucose tolerance in obese pregnant women. *Diabetes Metab* 2009;35:418-21. doi:10.1016/j.diabet.2009.04.008

70 Pelaez M, Gonzalez-Cerron S, Montejo R, Barakat R. Protective effect of exercise in pregnant women including those who exceed weight gain recommendations: a randomized controlled trial. *Mayo Clin Proc* 2019;94:1951-9. doi:10.1016/j.mayocp.2019.01.050

71 Perales M, Refoy I, Coteron J, Bacchi M, Barakat R. Exercise during pregnancy attenuates prenatal depression: a randomized controlled trial. *Evaluation Health Prof* 2015;38:59-72. doi:10.1177/0163278714533566

72 Phelan S, Phipps MG, Abrams B, Darroch F, Schaffner A, Wing RR. Randomized trial of a behavioral intervention to prevent excessive gestational weight gain: the Fit for Delivery Study. *Am J Clin Nutr* 2011;93:772-9. doi:10.3945/ajcn.110.005306

73 Ruiz JR, Perales M, Pelaez M, Lopez C, Lucia A, Barakat R. Supervised exercise-based intervention to prevent excessive gestational weight gain: a randomized controlled trial. *Mayo Clin Proc* 2013;88:1388-97. doi:10.1016/j.mayocp.2013.07.020

74 Sagedal LR, Øverby NC, Bere E, et al. Lifestyle intervention to limit gestational weight gain: the Norwegian Fit for Delivery randomised controlled trial. *BJOG* 2017;124:97-109. doi:10.1111/1471-0528.13862

75 Stafne SN, Salvesen KÅ, Romundstad PR, Torjusen IH, Mørkved S. Does regular exercise including pelvic floor muscle training prevent urinary and anal incontinence during pregnancy? A randomised controlled trial. *BJOG* 2012;119:1270-80. doi:10.1111/j.1471-0528.2012.03426.x

76 Vitolino MR, Bueno MS, Gama CM. [Impact of a dietary counseling program on the gain weight speed of pregnant women attended in a primary care service]. *Rev Bras Ginecol Obstet* 2011;33:13-9.

77 Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. *BMJ* 2012;345:e5605. doi:10.1136/bmj.e5605

78 Barakat R, Franco E, Perales M, López C, Mottola MF. Exercise during pregnancy is associated with a shorter duration of labor. A randomized clinical trial. *Eur J Obstet Gynecol Reprod Biol* 2018;224:33-40. doi:10.1016/j.ejogrb.2018.03.009

79 Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ* 2010;340:c221. doi:10.1136/bmj.c221

80 Higgins JPT, Thomas J, Chandler J, et al (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.5 (updated August 2024). Cochrane, 2024. Available from www.training.cochrane.org/handbook

81 Squires JE, Sullivan K, Eccles MP, Worswick J, Grimshaw JM. Are multifaceted interventions more effective than single-component interventions in changing health-care professionals' behaviours? An overview of systematic reviews. *Implement Sci* 2014;9:152. doi:10.1186/s13012-014-0152-6

82 Dipietro L, Evenson KR, Bloodgood B, et al, 2018 Physical Activity Guidelines Advisory Committee. Benefits of physical activity during pregnancy and postpartum: an umbrella review. *Med Sci Sports Exer* 2019;51:1292-302. doi:10.1249/MSS.0000000000001941

83 Zahalka SJ, Abushamam LA, Scalzo RL, et al. The role of exercise in diabetes. Updated 6 Jan 2023. In: Feingold KR, Anawalt B, Blackman MR, et al, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com. 2000. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK549946/>

84 Teixeira PJ, Carraça EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: a systematic review. *Int J Behav Nutr Phys Act* 2012;9:78. doi:10.1186/1479-5868-9-78

85 McGill R, Anwar E, Orton L, et al. Are interventions to promote healthy eating equally effective for all? Systematic review of socioeconomic inequalities in impact. *BMC Public Health* 2015;15:457. doi:10.1186/s12889-015-1781-7

86 Adams J, Mytton O, White M, Monsivais P. Why are some population interventions for diet and obesity more equitable and effective than others? The role of individual agency. *PLoS Med* 2016;13:e1001990. doi:10.1371/journal.pmed.1001990

87 Sheikh J, Allotey J, Kew T, et al, IPPIC Collaborative Network. Effects of race and ethnicity on perinatal outcomes in high-income and upper-middle-income countries: an individual participant data meta-analysis of 2 198 655 pregnancies. *Lancet* 2022;400:2049-62. doi:10.1016/S0140-6736(22)01191-6

88 American Dietetic Association (ADA). Position of the American Dietetic Association: individual-, family-, school-, and community-based interventions for pediatric overweight. *J Am Diet Assoc* 2006;106:925-45. doi:10.1016/j.jada.2006.03.001

89 Birkman AJ, Teuscher D, Feskens EJ, van Baak MA, Meershoek A, Renes RJ. Perceptions on healthy eating, physical activity and lifestyle advice: opportunities for adapting lifestyle interventions to individuals with low socioeconomic status. *BMC Public Health* 2014;14:1036. doi:10.1186/1471-2458-14-1036

90 Chen M, Moran LJ, Harrison CL, et al. Ethnic differences in response to lifestyle intervention for the prevention of type 2 diabetes in adults: a systematic review and meta-analysis. *Obes Rev* 2022;23:e13340. doi:10.1111/obr.13340

91 Simmons D, Gupta Y, Hernandez TL, et al. Call to action for a life course approach. *Lancet* 2024;404:193-214. doi:10.1016/S0140-6736(24)00826-2

92 England NHS. NHS Diabetes Prevention Programme (NHS DPP). Available from: <https://www.england.nhs.uk/diabetes/diabetes-prevention/>. 2019.

93 Leese C, Al-Zubaidi H. Urban green and blue spaces for influencing physical activity in the United Kingdom: a narrative review of the policy and evidence. *Lifestyle Med* 2024;5. doi:10.1002/lim2.96.

94 Yen H-Y, Chiu H-L, Huang H-Y. Green and blue physical activity for quality of life: A systematic review and meta-analysis of randomized control trials. *Landsc Urban Plan* 2021;212. doi:10.1016/j.landurbplan.2021.104093.

95 Lakkia TA, Aittola K, Järvelä-Reijonen E, et al. Real-world effectiveness of digital and group-based lifestyle interventions as compared with usual care to reduce type 2 diabetes risk - a stop diabetes pragmatic randomised trial. *Lancet Reg Health Eur* 2023;24:100527. doi:10.1016/j.lanepe.2022.100527

96 Greene EM, O'Brien EC, Kennelly MA, O'Brien OA, Lindsay KL, McAuliffe FM. Acceptability of the Pregnancy, Exercise, and Nutrition Research Study With Smartphone App Support (PEARS) and the use of mobile health in a mixed lifestyle intervention by pregnant obese and overweight women: secondary analysis of a randomized controlled trial. *JMIR Mhealth Uhealth* 2021;9:e17189. doi:10.2196/17189

97 O'Reilly SL, Laws R, Maindal HT, et al, IMPACT DIABETES B2B Consortium. A complex mHealth coaching intervention to prevent overweight, obesity, and diabetes in high-risk women in antenatal care: protocol for a hybrid type 2 effectiveness-implementation study. *JMIR Res Protoc* 2023;12:e51431. doi:10.2196/51431

98 Flanagan A, Frey T, Christiansen SL, AMA Manual of Style Committee. Updated guidance on the reporting of race and ethnicity in medical and science journals. *JAMA* 2021;326:621-7. doi:10.1001/jama.2021.13304

99 Kauh TJ, Read JG, Scheitler AJ. The critical role of racial/ethnic data disaggregation for health equity. *Popul Res Policy Rev* 2021;40:1-7. doi:10.1007/s11113-020-09631-6

100 Kanguru L, Bezwada N, Hussein J, Bell J. The burden of diabetes mellitus during pregnancy in low- and middle-income countries: a systematic review. *Glob Health Action* 2014;7:23987. doi:10.3402/gha.v7.23987

Web appendix: Supplementary web appendices