Diseño de un indicador de desempeño como estrategia para medir los cambios en la producción agrícola sobre el valor agregado sectorial en Colombia
Tesis
Materias > Alimentación
Materias > Ciencias Sociales
Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado
Español
Las estrategias a nivel nacional que han permitido medir la productividad agrícola en términos cuantitativos, con nivel de detalle y oportunidad de tiempo han sido precarias; por lo tanto en esta investigación se planteó un enfoque metodológico que contribuyó a la medición del desempeño del sector agrícola en Colombia, como herramienta para analizar y tomar decisiones de política agrícola con base en los resultados obtenidos. Para llevar a cabo este objetivo se propuso la construcción de un indicador de desempeño a partir del cálculo de valor agregado del sector agrícola, el cual permitió medir los cambios en la productividad del sector, se inició resaltando la importancia calcular el valor agregado para cada producto como insumo clave para medir el desempeño de un sector, ahora bien, a partir de la base metodológica planteada, se recolectó la información que permitió determinar a nivel sectorial: el valor de la producción, los consumos intermedios y los precios, con estas tres variables se calculó el valor agregado para diez productos considerados primordiales en el sector agrícola; una vez obtenida esta información se calculó el valor agregado nacional agrícola mediante la sumatoria del valor agregado por producto, los resultados obtenidos del año 2017 se contrastaron con las cifras oficiales para ese mismo año del valor agregado presentadas por el Gobierno Colombiano a través del DANE, con el fin de validar que la metodología desarrollada fuera acorde con la realidad. Posteriormente, se desarrolló el indicador a partir de la construcción de una serie de tiempo 2017-2021 para las variables: producción, consumos intermedios y precios, y finalmente se presentaron los resultados y se realizó un análisis del valor agregado analizando su incidencia en el desempeño agrícola. Una de las principales conclusiones de este estudio fue que la caña azucarera es un producto clave en la conformación del valor agregado agrícola nacional, así mismo se observa que el costo de los insumos agropecuarios para el café, el banano y la palma de aceite son de los más elevados en el sector. El indicador de desempeño sectorial pone sobre la mesa temáticas relevantes como el precio de los insumos agrícolas, el precio final de los productos, los volúmenes de producción, importaciones, exportaciones, entre otros aspectos, y evidenció la manera en que todo esto influyó de maneras tan diversas para cada producto y en el sector en general, finalmente se observó cómo la medición de la productividad contribuye en gran manera a evaluar la capacidad que tienen los países para proporcionar altos o bajos estándares de vida en su población.
metadata
Lopez Trilleras, Ruth Viviana
mail
ruvisi@hotmail.com
(2022)
Diseño de un indicador de desempeño como estrategia para medir los cambios en la producción agrícola sobre el valor agregado sectorial en Colombia.
Masters thesis, SIN ESPECIFICAR.
Resumen
Las estrategias a nivel nacional que han permitido medir la productividad agrícola en términos cuantitativos, con nivel de detalle y oportunidad de tiempo han sido precarias; por lo tanto en esta investigación se planteó un enfoque metodológico que contribuyó a la medición del desempeño del sector agrícola en Colombia, como herramienta para analizar y tomar decisiones de política agrícola con base en los resultados obtenidos. Para llevar a cabo este objetivo se propuso la construcción de un indicador de desempeño a partir del cálculo de valor agregado del sector agrícola, el cual permitió medir los cambios en la productividad del sector, se inició resaltando la importancia calcular el valor agregado para cada producto como insumo clave para medir el desempeño de un sector, ahora bien, a partir de la base metodológica planteada, se recolectó la información que permitió determinar a nivel sectorial: el valor de la producción, los consumos intermedios y los precios, con estas tres variables se calculó el valor agregado para diez productos considerados primordiales en el sector agrícola; una vez obtenida esta información se calculó el valor agregado nacional agrícola mediante la sumatoria del valor agregado por producto, los resultados obtenidos del año 2017 se contrastaron con las cifras oficiales para ese mismo año del valor agregado presentadas por el Gobierno Colombiano a través del DANE, con el fin de validar que la metodología desarrollada fuera acorde con la realidad. Posteriormente, se desarrolló el indicador a partir de la construcción de una serie de tiempo 2017-2021 para las variables: producción, consumos intermedios y precios, y finalmente se presentaron los resultados y se realizó un análisis del valor agregado analizando su incidencia en el desempeño agrícola. Una de las principales conclusiones de este estudio fue que la caña azucarera es un producto clave en la conformación del valor agregado agrícola nacional, así mismo se observa que el costo de los insumos agropecuarios para el café, el banano y la palma de aceite son de los más elevados en el sector. El indicador de desempeño sectorial pone sobre la mesa temáticas relevantes como el precio de los insumos agrícolas, el precio final de los productos, los volúmenes de producción, importaciones, exportaciones, entre otros aspectos, y evidenció la manera en que todo esto influyó de maneras tan diversas para cada producto y en el sector en general, finalmente se observó cómo la medición de la productividad contribuye en gran manera a evaluar la capacidad que tienen los países para proporcionar altos o bajos estándares de vida en su población.
| Tipo de Documento: | Tesis (Masters) |
|---|---|
| Palabras Clave: | Valor agregado, insumos intermedios, valor de la producción, indicador de desempeño, sector agrícola. |
| Clasificación temática: | Materias > Alimentación Materias > Ciencias Sociales |
| Divisiones: | Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster |
| Depositado: | 07 Dic 2023 23:30 |
| Ultima Modificación: | 07 Dic 2023 23:30 |
| URI: | https://repositorio.uneatlantico.es/id/eprint/2542 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
What works in financial education? Experimental evidence on program impact
Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.
Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,
García
en
close
Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.
Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,
Zhao
<a href="/17858/1/s41598-025-18979-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Detection and classification of brain tumor using a hybrid learning model in CT scan images
Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.
Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,
Ghasemi
en
close
Evidence suggests that first- and second-generation mindfulness-based interventions (MBIs) can improve body image concerns in adolescents and adults. However, a systematic review of such interventions is lacking. The aim of this study is to synthesize evidence from randomized controlled trials evaluating the efficacy of both first- and second-generation MBIs in reducing negative body image and enhancing positive body image. Database searches were conducted in PubMed, CoChrane, Proquest Thesis & Dissertations and ScienceDirect up to August 2025, identifying 3394 records. After screening, 43 studies met eligibility criteria (n = 7979) and were evaluated for methodological quality following PRISMA guidelines. Of them, 16 (37.2 %) evaluated first-generation MBIs, while the remaining 27 studies (55.8 %) examined second-generation MBIs, with self-compassion being the most commonly used intervention. Only one study used both generations. Both first- and second-generation interventions demonstrated moderate to large effect sizes in most studies, with 94 % reporting significant improvements in at least one body image outcome. The methodological quality, assessed using the JBI tool, was rated as having either low risk of bias or some concerns in nearly 70 % of the studies. These findings highlight the global efficacy of MBIs for reducing negative body image and improving positive body image, while also underscoring the need for future research to employ more methodologically rigorous designs, multidimensional outcome measures, and greater inclusion of diverse sex, gender, and ethnic groups.
Alba Gutiérrez Cabrero mail , Marian González-García mail marian.gonzalez@uneatlantico.es,
Gutiérrez Cabrero
