www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates
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Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type,
growth rate, location, removal strategy, and overall well-being of the patients. Among different
modalities used for the detection and classification of brain tumors, a computed tomography (CT)

scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated
procedures based on artificial intelligence (Al) and machine learning (ML) methods are used to detect
and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges

in achieving the desired outcome are associated with the model’s complexity and generalization. To
address these issues, we propose a hybrid model that extracts features from CT images using classical
machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high
cost and longer acquisition time make CT scans a more practical choice for early-stage screening and
widespread clinical use. The proposed framework has different stages, including image acquisition,
pre-processing, feature extraction, feature selection, and classification. The hybrid architecture
combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a
multilayer perceptron. The selection of the relevant features in our proposed hybrid model was
extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In
addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We
employed a scoring function to extract the features. The Classification is ensured using a multilayer
perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-
based brain tumor classification, our method is specifically designed for CT scan images, addressing
their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first
work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in
a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on
data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of
98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often
report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3-4% of leading
MRI-based approaches, demonstrating strong generalization despite the modality difference. The
proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain
tumor detection and classification accuracy in CT scans. It has the potential for clinical application,
aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT

scans are more accessible and faster to acquire, making them suitable for early-stage screening and
emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-
world healthcare settings.
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Abnormal cell growth, hormonal imbalance, and partial loss of vision are the symptoms of brain tumors. This
tumor affects the body’s functions, including memory, emotions, vision, motor skills, responses, and breathing.
Early diagnosis and disability can be averted, and surgical costs minimized. Computer-aided diagnosis, including
MRI used due to advancements in medical imaging. The three main techniques (MRI, CT, and PET) for brain
malignancies are frequently employed to analyze the anatomy of the brain'. Brain tumors are classified into three
primary categories: gliomas, meningiomas, and pituitary tumors. Gliomas, accounting for approximately 30% of
all brain tumors, are frequently malignant and have a median survival rate exceeding two years. Meningiomas
are typically benign and characterized by slow growth. Although pituitary tumors are often benign, they can
lead to significant health complications by disrupting endocrine function, resulting in hormonal imbalances
and visual disturbances. The Brain tumor stage is an essential step in the process because proper diagnosis
and prevention of the disease depend on a complete understanding for better survival; hence, early detection
requires expert opinion in the evaluation of patients?.

Artificial intelligence (AI), machine learning (ML) algorithms, and Deep learning (DL) have made strong
progress in medical imaging, and hybrid models are increasingly relevant*. Brain tumor medical treatment
since then has been markedly optimized by a new technique that merges Deep Learning and Machine Learning.
This pioneering way gets rid of human interpretation issues and becomes a better and more accurate detection
tool for radiologists. The primary objective of this research is to contribute to the development of brain tumor
detection and classification in CT scan images, providing a deep overview of the methodologies existing in the
literature, starting from classic machine learning methods to state-of-the-art deep learning systems. Although
MRI is frequently utilized for its contrast information in guiding treatment decisions, the manual evaluation
of extensive MRI data is both time-intensive and expensive. Similarly, while CT scans play a critical role in the
identification of brain tumors, they are also hindered by the challenges associated with manual interpretation.
Beyond manual interpretation, automated analysis of CT scan images faces specific challenges, including
lower soft-tissue contrast compared to MRI and variability in image quality due to differences in acquisition
settings. These factors contribute to difficulty in extracting meaningful features, increasing the complexity of
model design and limiting generalization across datasets®. Additionally, deep learning models often require
large labeled datasets, which are scarce in the context of annotated CT brain tumor images. This study
addresses these challenges by developing a hybrid model that reduces complexity through feature selection and
improves generalization by integrating both hand-crafted and deep features from complementary sources. This
systematically assesses the strengths and limitations of the latter approaches for the selection of the most efficient
models that allow significant enhancement of the performance in brain tumor detection and classification in CT
scan images.

The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain
tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early
and accurate diagnosis, and is vital for patient care. The selection of the relevant features in our proposed hybrid
model was extracted using the Select KBest algorithm. Thus, it optimizes the proposed model performance. In
addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed
a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural
network. The main objective of this study is to develop a novel hybrid model for brain tumor classification using
CT scan images, which are more accessible and time-efficient than MRI. Unlike previous works that primarily
rely on MRI data or a single deep learning model, our approach integrates both hand-crafted features and deep
features, followed by feature selection using the SelectKBest algorithm and classification using an MLP neural
network.

The key contributions of this paper include: (1) proposing a hybrid feature extraction strategy combining
classical and deep features tailored for CT scans; (2) introducing a feature selection step to reduce complexity
and enhance generalization; and (3) demonstrating the model’s superior performance on CT images compared
to existing MRI-based approaches.

The research is presented here in four sections, beginning with the literature review section, where existing
methods associated with the detection and classification of brain MRI and CT scans are discussed. In the next
section, the proposed approach is explained, which begins with the image acquisition steps along with pre-
processing, feature extraction, feature selection, and classification. The third section focuses on the experimental
results, which evaluate the outcomes of applying the proposed approach to real data sets and provide an analysis
of different models and their efficiency. Finally, the conclusion and future work are presented to summarize and
encapsulate the findings and discoveries, along with future directions.

Literature review

This section reviews recent techniques for the detection and classification of brain tumors using MRI and
CT scan images, detailing the methodologies, implementation strategies, datasets, and associated limitations,
while providing recommendations for future advancements. Nabizadeh et al.> presented an automatic system
for detecting tumor slices and defining tumor areas, demonstrating high accuracy and low computational
complexity in brain tumor tissue segmentation. It also compares statistical features over Gabor wavelet features
for tumor segmentation applications. They are highly redundant and lead to high computational costs. Das et
al.% enhanced treatment planning, growth rate prediction, and clinical trial monitoring. It uses non-sub-sampled
shearlet transformation, spatial fuzzy c-means clustering algorithm, and Gabor Filtering. Experimental results
show high accuracy rates for various datasets of MRI, but the applicability of the proposed features has not
yet been tested on real-time, diverse datasets. Deep learning, a hierarchical machine learning technique, uses
multiple layers for intricate features and high-level inferences. In’, they focused on brain tumor classification
using magnetic resonance images MRI. The proposed model uses CNNs and a multi-branch network with an
inception block. The model was evaluated using the Br35H dataset and compared to other classification models.
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The CNN with a Multi-Branch Network and Inception block demonstrated exceptional performance. Another
research proposed a novel parallel deep convolutional neural network (PDCNN) topology to extract global and
local features from two parallel stages, addressing overfitting problems. The method uses regularized and batch
normalization, resizing input images, and utilizing grayscale transformation. The method is effective in three
MRI datasets, achieving accuracy of 97.33%, 97.60%, and 98.12%, compared to state-of-the-art techniques®.
The challenge of non-Euclidean distances in image data and the incapacity of traditional models to infer pixel
similarity based on proximity is what Ravinder et al.” seek to overcome. A graph-based convolutional neural
network (GCNN) model is proposed, which improves brain tumor detection and classification in MRI images.
The model combines GNN and a 26-layered CNN, with Net-2 outperforming other networks. The model
represents a critical alternative for the statistical detection of brain tumors in suspected patients, but requires a
high computational demand.

To categorize brain malignancies into three groups: glioma, meningioma, and pituitary tumor, Zulfiqar et a
used CNN and Deep Learning using EfficientNets. A publicly available CE-MRI dataset is used to enhance five
iterations of pre-trained models. The method involves loading ImageNet weights, adding top layers, and a fully
connected layer. Experiments show robustness and data augmentation effects on model accuracy. Reyes et al.!!
explored deep architectures like VGG, ResNet, EfficientNet, and ConvNeXt for a network based on two magnetic
resonance imaging datasets. The results show several networks achieve high accuracy rates. The largest models
are VGG, MobileNet, and EfficientNetB0, with VGG having over 171 million parameters. The fastest models are
VGG and MobileNet, with ConvNext being the slowest. The majority of models need fine-tuning after transfer
learning to attain the highest accuracy. Khushi et al.> proposed a brain tumor classification method using MRI
images and a pre-trained EfficientNetB4 model. They enhanced the Br35h dataset through data augmentation
and employed transfer learning with adjustable learning rates and regularization. Their model achieved an
accuracy of 99.87% on the augmented dataset. The study demonstrates the effectiveness of EfficientNetB4 in
MRI-based tumor classification, highlighting the potential of deep learning models even on relatively small
datasets. However, their model is limited to distinguishing tumor vs. non-tumor cases, lacking the capability
for multi-class tumor classification, which is critical for clinical decision-making. Kar and Singh®' proposed
MBTC-Net, a multimodal deep learning framework that classifies brain tumors using both CT and MRI
scans. Their model leverages EfficientNetV2BO0 for high-dimensional feature extraction and employs a multi-
head attention mechanism to enhance spatial context understanding. Evaluated on three open-access datasets,
including a multimodal CT + MRI dataset, MBTC-Net achieved classification accuracies of 97.54%, 97.97%, and
99.34% across 15-class, 6-class, and binary setups, respectively. Unlike traditional fusion methods, MBTC-Net
processes MRI and CT images independently in the same framework, learning distinct representations that
support cross-modal generalization. But the system was primarily evaluated in a binary classification setup,
and performance on CT scans may be limited due to modality imbalance in the dataset. Future work is planned
to address structured fusion and clinical validation. Table 1 provides a summary of the methods employed for
tumor classification and detection based on a combination of deep learning methods and machine learning
methods in brain images.

Based on the reviewed literature, most existing models either rely on deep learning architectures with
millions of parameters—leading to high computational complexity or are limited in their ability to generalize
due to modality constraints (MRI-only focus), limited datasets, or lack of feature optimization. Several studies
employ powerful CNNs or attention-based models without adequate dimensionality reduction, which increases
training time and hardware dependency. Others focus on binary classification only, failing to differentiate
between tumor types. These limitations motivate the need for a more efficient and generalizable approach.
The proposed hybrid model addresses these gaps by combining hand-crafted and deep features with a feature
selection mechanism (SelectKBest), enabling reduced model complexity while maintaining strong classification
performance across multiple tumor types in CT scan images. Unlike most hybrid feature-based approaches in the
literature, which are predominantly developed for MRI-based brain tumor classification, our proposed method
is tailored specifically for CT scan images, considering their distinct noise characteristics and lower soft-tissue
contrast. To the best of our knowledge, no prior work has integrated LBP, HOG, and median intensity with deep
features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. This
combination, along with a feature selection stage, aims to reduce computational complexity while improving
multi-class classification performance in a modality that is faster, more accessible, and more widely used in early
clinical screening. This methodology provides a consistent response to the intricacies of the process of carrying
out precise and expedient tumor detection.

1_10

Proposed framework

In this section, we explain our proposed framework. The proposed framework has different stages, including
image acquisition, pre-processing, feature extraction, feature selection, and classification. The proposed
methodology starts with the phase named Data Organization. In this process the collection of CT scan images
from publicly accessible datasets as shown in Fig. 1. The improvement in image quality, considering noise,
especially in the pre-processing step, relies on nonlinear filtering; further steps include feature selection and
extraction using techniques from visual descriptors combined with deep features coming from pre-trained
models. We choose appropriate methods to extract the relevant and useful characteristics related to the shape
and textural changes of the tumors. In the classification phase, a new multi-layer perceptron model identifies and
classifies different types of brain tumors based on their characteristic patterns. In addition, this process is lengthy
because of the assurance of effective identification and classification of the unique attributes of brain tumors.
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Fig. 1. Proposed model.

Tumor category | Total | Training | Validation | Test
Glioma 230 | 161 35 34
Meningioma 270 | 189 40 41
Pituitary 210 | 147 32 31
Normal 678 | 475 102 101
Total 1388 | 972 209 207

Table 2. Distribution of dataset across training, validation, and testing sets.

Image acquisition

The first step is the data acquisition phase. We have used a brain tumor dataset. The dataset is obtained from
a free online repository called Radiopaedia. The dataset provides pre-processed CT images from different
patients. It can be accessed with the link: https://radiopaedia.org/search?scope=cases&sort=date_of_publicat
ion with 1388 computed tomography images representing the findings in each case. For model development,
the dataset was randomly partitioned into 70% for training, 15% for validation, and 15% for testing. The split
was stratified, ensuring that all four classes (glioma, meningioma, pituitary tumor, and normal brain) were
proportionally represented in each subset. To prevent data leakage, care was taken to ensure that images from
the same patient were not shared across training and testing sets. This division supports robust model evaluation
and avoids overfitting, especially considering the class imbalance present in the original dataset. Table 2 shows
the distribution of CT scan images across training, validation, and testing sets. Figure 2 represents sample images
of each category in this dataset, including glioma, meningioma, pituitary tumor, and normal brain. The dataset
includes variation in the quality of the images, due to a difference in scanning equipment and settings, and inter-
patient variability, where the same type of tumors may differ in character. Another problem that this dataset faces
is class imbalance, as some tumor types are less represented compared to others, which could result in biased
performances from the models. These are some of the challenges that require highly developed pre-processing,
feature extraction, and classification methods to handle the complexities inherent in the dataset.

Data augmentation

Data augmentation is a technique that artificially enlarges the number of datasets for detecting and classifying
brain tumors. This approach will enhance the model’s capability to generalize, thus giving it the ability to operate
even in the presence of errors in unseen and new diagnostic tests. However, it will simultaneously increase
diagnostic accuracy and help in overcoming the sample size constraints and issues faced in image acquisition
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Fig. 3. Example of augmented data.

modalities. Performing augmentation increases the diversity of the dataset without any actual collection of new
data, hence making the model more robust and avoiding the possibility of overfitting. The Image augmentation
stage includes Rotation: Images are rotated within a range of + 15 degrees. This helps the model become invariant
to slight rotations in the input images. Zoom: Images are zoomed in or out within a range of +20% (0.2). This
augmentation helps the model generalize better to images of varying scales. Contrast: The contrast of images
can vary between 0.5 and 1.5 times the original contrast. Adjusting contrast aids in making the model robust
to variations in image contrast across the dataset. Rescale: The pixel values of images are rescaled by a factor
of 1/255. This normalization ensures that pixel values fall within the range of [0, 1], which is often beneficial
for neural network training. These augmentations were applied only to the training set to prevent information
leakage and ensure fair model evaluation. Figure 3 presents examples of enhanced CT sequences depicting
brain tumors following the application of the previously described data augmentation techniques. Table 3
provides a detailed overview of the distribution of training data across various classes, both before and after the
augmentation process was applied to the images within the training set of the dataset.

Data pre-processing
Data pre-processing is a critical step in preparing the images for optimal feature extraction and subsequent
analysis. The primary objective of pre-processing is to enhance the quality and consistency of the images, thereby
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Training data Training data
Tumor category | before augmentation | after augmentation
Glioma 161 483
Meningioma 189 567
Pituitary 147 441
Normal 475 475
Total 972 1966

Table 3. Original and augmented dataset distribution.

Preprocessing steps

Original
image

Cropped Resized images and De-noised

Histogram
1mage convert to grayscale image

equalization

Fig. 4. Pipeline of pre-processing steps.

improving the performance of the deep-learning models. Most raw CT images have variability in acquisition
settings, noise, and inconsistent illumination that may obscure important features, leading to inaccuracies in the
detection and classification of brain tumors. Effective pre-processing mitigates these challenges by standardizing
the input data, reducing noise, and enhancing contrast. The pre-processing pipeline is shown in Fig. 4. First,
cropping was done to eliminate the background of the brain area. This has the effect of reducing computation
and allowing the model to focus only on the relevant data. The image is then resized at 256 x 256 to standardize
the input data dimensions and to provide one consistent input size for feeding into the model, subsequently
reducing the computational burden and enhancing learning efficiency. Gray scaling reduces the dimensionality
while retaining important structural information, further simplifying data for robust feature extraction.

Non-linear filters such as Median filtering reduce noise and remove artifacts, which improves the signal-to-
noise ratio and prevents the model from learning irrelevant patterns that operate on each pixel by replacing it
with the median value of the intensities within a local neighborhood (kernel). A median filter works in a way
that it takes the median of neighboring intensity values of each pixel one by one. The median filter, compared
with linear filters like Gaussian blurring, suppresses impulse noise (like salt-and-pepper noise) effectively while
preserving edges due to its median being less prone to outliers'>!*.

Further, histogram equalization techniques are applied to enhance the contrast and keep the brightness of
the images uniform for the proper distribution of intensities within an image. This helps to make the features
of tumors more distinguishable. All these steps of pre-processing collectively optimize images for accurate and
effective analysis during the training of deep learning models, improving both the detection and classification of
brain tumors. This is achieved by mapping the original intensity values to new values based on their cumulative
distribution function (CDF)'41°,

Feature extraction
Feature extraction is necessary to prepare the data for use by the classification models-especially complex tasks.
It marries deep learning networks together with texture and shape descriptors, which are learning high-level
features for tumor detection. Traditional methods are aimed at the extraction of high-level textural and structural
features, which will promote precision and robustness in the detection and classification of brain tumors.

The hybrid nature of the proposed model lies in the combination of both handcrafted and deep learning-based
feature extraction techniques. Specifically, we use Local Binary Pattern (LBP), Histogram of Oriented Gradients
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(HOG), and median intensity features as handcrafted descriptors. In addition to handcrafted descriptors, this
study employs feature engineering with deep learning. Specifically, pre-trained CNNs (ResNet50 and AlexNet)
are used in evaluation mode to extract deep semantic features, which are then engineered into the hybrid
pipeline alongside LBP, HOG, and median intensity features. Unlike end-to-end fine-tuning, this approach
treats CNNs as fixed feature extractors and explicitly combines their outputs with handcrafted features, thereby
enhancing the diversity and discriminative power of the overall feature space. These diverse feature types are
concatenated and passed through a feature selection process (SelectKBest algorithm) before classification using
a multilayer perceptron (MLP). This fusion of classical texture/shape descriptors with high-level learned features
enables the model to leverage complementary information, improving both accuracy and generalization. Local
Binary Pattern (LBP), introduced by Ojala et al. in 1996, is a central tool in the classification of textures and the
detection of tumors. The capability of LBP in picking up the fine textural details in CT images is possible because
it compares pixels with one another and then checks the presence of texture.

Rotation and illumination are factors that could easily affect brain tumor classification; thus, feature extraction
methods must be robust to these factors, which might happen for different positioning or conditions of the
patient. The use of LBP satisfies this because it has a consistent and reliable texture descriptor that is invariant
to such changes; hence, the features extracted are truly representative of the underlying tissue characteristics.
The main challenge in the detection and classification of brain tumors is to accurately differentiate the tumor
from normal tissue, especially when the tumor textures are subtle and varied. It is difficult for traditional feature
extraction methods to overcome this challenge because they are susceptible to changes in image conditions.
While focusing on the frequency of the local structure, LBP captures the local texture pattern at multiple scales;
hence, this approach allows for the discrimination of normal versus abnormal tissues even under variable
conditions.

LBP extracts textural structures on various scales using a round neighborhood template. The sampling scale
R (R>0) with P (P>0) sampled neighborhood pixels g,(P=0,1,., P-1) uniformly dispersed around the circular
neighborhood template!®. In this research, we used (P, R) = (8, 1) to balance computational cost and feature
richness.

In addition to LBP, the Histogram of Oriented Gradients (HOG) method is another critical feature extraction
technique employed to enhance diagnostic performance. HOG employs the histogram of gradients to depict
the distribution of directions that are essential for finding figures and contours. This includes computation,
normalization, and creation, as well as the formation of the final feature vector. HOG is a powerful tool to grab
edge and gradient information; therefore, it contributes to tumor detection and classification accuracy!’.

In the field of medical imaging analysis, LBP and HOG are known to have brought a very valuable attribute
known as robust features, which is achieved using statistical measures such as median intensity. The usefulness
of this feature lies in its capability of pinpointing the tumor, thanks to its unique ability to stand out against the
background noise and outliers. Here, the median is found to be a powerful force through which the image is
mapped to its most representative value and thus can be used to not only reduce excitation, without decreasing
performance, classification, and detection accuracy, but also can even improve it1819,

In addition to traditional methods like LBP, HOG, and median intensity selection, deep learning features
play a transformative role in brain tumor detection. Deep learning is a powerful technique in the detection of
brain tumors, learning complex patterns with a higher level of abstraction within medical images. Contrary
to classic machine learning, it allows the deep learner to draw finer details out of an image that could enable
discrimination between abnormalities. This learning ability for the subtle features is highly important in medical
image processing due to the possibility that the tumor may present shapes and sizes of all forms.

ResNet50 and AlexNet serve as baseline deep learning models, commonly used in the literature for medical
imaging. They have been chosen because they are well-established architectures with proven performance
in similar tasks. We have used ResNet50 as shown in Fig. 5, a deep convolutional neural network (CNN)
architecture with 50 layers, for feature extraction from CT scan brain images. The ResNet50, in particular, is
one of those models that is known for the introduction of residual connections that overcome the vanishing
gradient problem in many networks during the extensive layers. ResNet50 is a model that combines depth and
computational efficiency, which is the answer to the problem of training difficulties in deep networks, and is
known to identify complex brain tumor imaging patterns and their deformities. ResNet50, with its residual
structure, gives a new way to define features and thus can distinguish the tumor types and improve the accuracy
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Fig. 5. Architecture of the ResNet50 model.
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of classification. That leads to more precise tumor detection, creating better characterizations®!. If ResNet50
is employed for feature extraction, it usually only retains the convolutional layers serving as feature extractors
by capturing hierarchical features from the input images upon removal of the last fully connected layers. The
features extracted by ResNet50 amount to 2048 dimensions and can subsequently be fed into further machine-
learning tasks or one or more fully connected layers. This study uses AlexNet for feature extraction. AlexNet
is a deep learning architecture widely recognized for its landmark victory in the 2012 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) and has since become one of the foundation models in computer vision
(shown in Fig. 6%. AlexNet’s deep convolution layers permit it to acquire complex spatial hierarchies, garnering
detailed patterns and structures bound to brain cancer diagnostics. A concise architecture is accountable for
the extraction of a lot of diversity of features compared to a more convoluted architecture such as VGGNet?!. It
attests that the AlexNet architecture can be quite helpful in at least many medical applications where either the
computational resources are not strong enough or fast inference times are needed.

AlexNet solves problems related to medical imaging through the use of large convolutional layers that are then
passed through nonlinear activations. The method itself improves the training process as well as the generalized
data, especially in the case of small medical imaging datasets, by dealing with the data complexity and by
overcoming the limitations of traditional feature extraction methods. AlexNet boosts feature extraction, thereby
upgrading tumor classification, diagnostic precision, and dependable results. It gives the same importance to the
accuracy of results and computational efficiency, and is therefore the most suitable for a brain tumor analysis,
which consists of feature extraction and practical resource usage.

The Feature extraction part of AlexNet provides 9216 features that reduce error rates on the ImageNet
dataset; thus, it is a suitable tool for the detection of intricate patterns in different imaging backgrounds. This
work focuses on the convolutional layers, which are responsible for extracting features from input images
hierarchically. The 9216 extracted features can further be used in subsequent machine learning tasks or for
tumor classification in fully connected layers.

Feature selection
The key idea is to avoid overfitting and complexity, which is achieved by picking out data with the highest scores
among others that are based on tests of statistical relevance.
To address this, we employed a scoring function S (fi,y) (SelectKBest algorithm)
to evaluate each feature f; € Fiotai . The function S measures the statistical dependence between features.
fi The target variable y. A common approach is to use metrics such as Mutual Information (MI) or Chi-Square
(@?) [22]:

_p(fiy)
SMI fz, Z Zp fla log (f ( ) (1)

fi€F yeY

where p (fi,y) Is the joint probability distribution, and p (f;) p (y) Are the marginal distributions?

To find relevant features useful in prediction and annotation, cross-validation is utilized; only good and
useful ones are kept for further research. The primary goal of feature selection is to identify a subset of the
most relevant features. Flsejecteafrom a high-dimensional feature space Fiotar = {f1, f2, ..., fa}, where
n presents the total number of features. This step addresses issues such as redundancy, irrelevance, and noise,

'OCESS
PrePl cessed Conii Ove lapping Ove lapping
image 11x11 Max pool Conv Max pool

Stride 2.4 5535 S5% 33,

S Wi —y . =

96 kemels Stride =2 lflgﬂlim-cls Side=2

9% 256
11x11x3 96 256
j —> —> —» —> —>
55
o 27 7
2 13
Conv
27 27 13 373,
55 %
Pad =1
2127x227x
227%227x3 384 kernels
Ove lapping
Conv Conv Max pool
343, 384 3x3, 33, .
384 Pad =1 Pad=1 256 Stride=2 3¢
384 kernels 256 kernels 9216
> —_— e —»  Features

13

1

W

Fig. 6. Architecture of AlexNet model.
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which can otherwise degrade model performance. The need for feature selection arises from challenges such as
overfitting, increased computational cost, and reduced generalization ability. Each feature is ranked based on its
score, and only the top k features are selected:

Foctectea = { fi | S (fi, y)is among the top k scores} (2)

In this study, we use k=10,000 to select the top features, combining Local Binary Pattern (LBP) features
(nLBp = 65,536) and Histogram of Oriented Gradients (HOG) features (nzog = 72,900 ), resulting in a
total initial feature space of (n¢otar = 138,436). The chosen value of k& was determined through cross-validation
to balance the trade-off between model performance and computational efficiency.

Fusion of deep learning and hand-crafted features

The output from these pre-trained models, combined with selected hand-crafted features and median intensity,
is merged into a hybrid feature vector. More precisely, it includes features from ResNet50 and AlexNet, with the
chosen features from LBP and HOG, and one feature, median intensity, which is rather high-dimensional. This
hybrid vector can represent an image more comprehensively compared to a normal feature vector and provide
more insight. For that reason, the result of subsequent analysis tasks performed using this hybrid vector greatly
improves their performance. Additionally, this combination enhances classification robustness and accuracy,
forming the core of the proposed hybrid approach.

Classification using multilayer perceptron neural network (MLP)

The presence of dense layers in MLPs makes them very effective in the extraction of complex patterns and
interactions in high-dimensional data, such as CT scan images; they are good at learning nonlinear relationships
and finding intricate patterns, which is necessary to differentiate between tumor types. Although both CNNs
and RNNs? can handle the same task, the MLP performs an excellent trade-off between efficiency and model
complexity. Overall, training and implementing MLPs are considerably easier than those of higher complex
models, especially when such models are combined with solid and efficient feature extraction techniques.
Besides, MLPs grant enough flexibility and adaptability in the majority of classification scenarios that can
justify their application in our four-class classification task. The proposed MLP model consists of several layers
of neurons, where an activation function has been introduced to bring non-linearity to the network. More
specifically, the ReLU is an activation function since it avoids problems like the vanishing gradient problem in
the hidden layers, allowing this model to learn complicated patterns in the data. It improves the efficiency of
training since, for only positive neuron inputs, it gives an active output, which reduces the convergence of the
network and computational complexity. It has batch normalization layers after the standardization of every input
in a batch to keep the distribution of inputs constant. This helps in avoiding the problem of internal covariate
shift, hence making training easier and more stable, besides better generalization. Then it uses dropout layers to
avoid overfitting and has a final layer with Softmax activation that provides an output as a probability distribution
for classification. It is designed for a four-class classification problem and provides the probability of each class.
The model uses the top selected features as input to classify into four categories. The architecture of this model
is presented in Fig. 7, and the hyperparameters of the proposed model are given in Table 4. The proposed hybrid
model follows a modular training strategy. Handcrafted features (LBP, HOG, and median intensity) and deep
features (from pre-trained ResNet50 and AlexNet) are extracted separately. Deep models are used in frozen
mode without fine-tuning. All features are concatenated and reduced using SelectKBest. The final classification
is performed using an MLP, trained with cross-entropy loss and the Adam optimizer. This multi-stage pipeline
improves generalization and reduces model complexity.

Experimental results evaluation metrics

All experiments were conducted on a personal laptop equipped with an Intel Core i7 CPU, 32 GB RAM, and
a 512 GB SSD, running Windows 11. The implementation was done in Python 3.9, utilizing libraries such as
TensorFlow, Keras, PyTorch, scikit-learn, OpenCV, and NumPy. Feature extraction using pre-trained CNNs
(ResNet50 and AlexNet) was performed in evaluation mode without fine-tuning. Feature extraction using pre-
trained CNNs (ResNet50 and AlexNet) was performed in evaluation mode without fine-tuning. While this
approach significantly reduces computational requirements and avoids the need for large annotated datasets,
it may limit the ability of the networks to fully adapt to the domain-specific characteristics of CT brain images.
Fine-tuning could potentially yield higher performance by allowing the pre-trained weights to adjust to
modality-specific features, but it was avoided here to reduce complexity and prevent overfitting, given the limited
dataset size. Data pre-processing, augmentation, and classification pipeline were developed and executed in this
environment. We have used the key metrics to evaluate the performance of the model in its effectiveness in
performing its intended work in classification. Accuracy gives the general correctness of the model’s performance;
precision shows the percentage of positive instances predicted out of all positive predictions. Recall shows the
model identifying all the actual positive instances correctly, while the F1-score gives a decent balance between
precision and recall, which latter quite useful when the data is imbalanced. All these metrics are computed
with the help of the confusion matrix, which categorizes the predictions into true positives, false positives, true
negatives, and false negatives. This matrix is the very basis for each performance metric computation and allows
a detailed look at strengths and weaknesses regarding the model’s performance in classification. To ensure robust
performance evaluation and minimize bias due to dataset partitioning, a 10-fold cross-validation strategy was
employed. The dataset was randomly divided into 10 equal subsets, where in each iteration, nine folds were used
for training and one fold for testing. The reported metrics represent the average performance across all folds.
This approach is particularly necessary for our study due to the relatively limited dataset size. By using multiple
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Extracted
Features

dense_5 | input: | (None, 21265)
Dense | output: | (None, 1024) batch_normalization_6 | input: | (None, 256)
BatchNormalization | output: | (None, 256)

batch_normalization_4 | input: | (None, 1024)
BatchNormalization | output: | (None, 1024)

dropout_6 | input: | (None, 256)
Dropout | output: | (None, 256)

dropout_4 | input: | (None, 1024) Jense_8 | input: | (None, 256)
Dropout | output: | (None, 1024) Dense | output: | (None, 64)
dense_6 | input: | (None, 1024) batch_normalization_7 | input: | (None, 64)
Dense | output: | (None, 512) BatchNormalization | output: | (None, 64)

dropout_7 | input: | (None, 64)
Dropout | output: | (None, 64)

batch_normalization 5 | input: | (None, 512)

BatchNormalization | output: | (None, 512)

dense_9 | input: | (None, 64)

dropout_5 | input: | (None, 512) D output: | (None, 4)
Dropout | output: | (None, 512) I
dense_7 | input: | (None, 512) \ \

Dense | output: | (None, 256)

Glioma Meningioma Pituitary Normal

Fig. 7. The features c proposed model.

Epochs 100

Optimizer Adam

Learning rate 0.0001

Batch size 32

Dropout 0.3

5 Dense layers 1024,512,256,64,4
Activation function Relu

4 Batch Normalization | -

Last activation function | Softmax

Function of loss categorical_crossentropy

Patience level 5

Table 4. Hyper parameter tuning for proposed MLP model.

train-test splits, we reduce the risk that the model’s performance is overestimated or underestimated due to a
single, potentially unrepresentative split. It also ensures that every sample in the dataset is used for both training
and testing, providing a more reliable and generalizable performance estimate. Table 5 presents the prediction
results of the proposed approach, which integrates hand-crafted features, ResNet50, and AlexNet with an MLP
classifier, demonstrating strong performance across all evaluation metrics, and also shows the base model
(hand-crafted features without pre-trained models) across the different types of tumors. Standard deviations (+)
are included to indicate performance variability, estimated based on 10-fold cross-validation. Figure 8 illustrates
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Proposed Tumor category
approach and Normal brain | Sensitivity | Precision | Specificity | F1-score | Accuracy
HOG + Meningioma 0.9140.03 |0.73+0.02 | 0.86+0.03 | 0.81+0.02 | 0.88+0.02
Median .
intensity + Pituitary 0.65+0.02 | 0.80+0.04 | 0.95+0.02 | 0.72+0.02 | 0.88+0.02
LEP + Glioma 0.7240.02 | 0.77+0.02 | 0.93+0.03 | 0.75+0.02 | 0.88+0.01
Kbest +
MLP (base model) Normal 0.85+0.03 |0.91+0.02 | 0.97+0.01 | 0.88+0.03 | 0.94+0.02
Meningioma 0.93+0.03 | 0.91+0.03 | 0.96+0.02 | 0.92+0.03 | 0.95+0.02
HOG+
Median intensity + Pituitary 0.8240.04 |0.92+0.03 | 0.97+0.02 | 0.87+0.03 | 0.94+0.02
LBP +Kbest + Glioma 0.86+0.03 | 0.86+0.03 | 0.95+0.02 | 0.86+0.03 | 0.93+0.02
ResNet50 + MLP
Normal 0.99+0.01 |0.92+0.03 | 0.97+0.01 | 0.95+0.02 | 0.98+0.01
Meningioma 0.97+0.02 | 0.99+0.01 | 0.99+0.01 |0.98+0.01 | 0.99+0.01
HOG+
Median intensity + Pituitary 0.9140.03 |0.90+0.03 | 0.96+0.02 | 0.95+0.02 | 0.95+0.02
LBP +Kbest + Glioma 0.86+0.03 | 0.93+0.02 | 0.97+0.02 | 0.89+0.03 | 0.95+0.02
AlexNet + MLMLP
Normal 0.99+0.03 | 0.91+0.03 | 0.97+0.02 | 0.95+0.02 | 0.97+0.01
HOG + Meningioma 0.99+0.01 |0.99+0.01 | 0.99+0.01 |0.99+0.01 | 0.99+0.01
Median intensity + o
LBP + Kbest + Pituitary 0.8940.03 |0.92+0.02 | 0.97+0.02 | 0.90+0.03 | 0.96+0.02
ResNet50 + AlexNet+ | Glioma 0.9240.03 |0.90+0.03 | 0.96+0.02 | 0.91+0.03 | 0.95+0.02
MLP (proposed
hybrid model) Normal 0.97+0.01 |0.97+0.01 | 0.99+0.01 |0.97+0.01 | 0.98+0.01

Table 5. Comparison of the proposed model using different metrics.

the confusion matrices of the base model, the base model and ResNet50, the base model and AlexNet, and also
the hybrid model (combination of base model, ResNet50, and AlexNet). We compare ResNet50, and AlexNet
shows better performance in glioma, meningioma, normal tumor, and pituitary tumor. However, the combined
model always has higher precision, recall, and overall accuracy compared to individual models. In our proposed
model, ResNet50 and AlexNet, it is observed that the graph of the training curve lies above the graph of the
validation curve. Also, its minimum validation loss is 0.22 while the minimum training loss is 0.02, as shown in
Fig. 9. Figure 9 shows the curves of training and validation losses of the proposed hybrid model based on a pre-
trained architecture and a base model. Figure 9 (a) shows a view of training and validation loss using the base
model (hand-crafted features). Figure 9 (b) gives a view of a linear decrease of training loss using just the base
model and ResNet50. Figure 9 (¢) illustrates the same, however, with stronger oscillations for the validation loss,
suggesting that the base model and AlexNet generalize a bit worse on this dataset. Hybrid architecture in Fig. 9
(d), already combining base model, ResNet50, and AlexNet with an MLP classifier (hybrid model), presents both
low and stable validation losses while showing a smaller gap between training and validation loss that ensures
good generalization and possibly robustness for the detection and classification of brain tumors.

The effectiveness of the proposed approach is evaluated using a number of metrics across various tumour
types and MLP classifiers.

Figure 10 shows accuracy curves of feature extraction, pre-trained models, and the proposed MLP classifier.
Training accuracy consistently exceeds validation accuracy, with a peak of 98.71 and 94.56 across epochs.
Figure 10 compares the training and validation accuracy of the proposed hybrid model by using different pre-
trained architectures. Figure 10 (a) shows training and validation accuracy based on base model. In Fig. 10 (b)
(ResNet50 andbase model), training accuracy rapidly increases up to a high value, while the validation accuracy
is stabilized around 90% with minor variations, hence the good performance with minor variability. Figure 10
(c) (AlexNet and base model) also shows high training accuracy, but its validation accuracy is highly variant
and remains lower than the previous case, hence reducing generalization compared to ResNet50. It can be seen
that Fig. 10 (d) stands for the hybrid model, which combines the base model, ResNet50, and AlexNet, and an
MLP classifier. It has a high validation accuracy and shows stability in training and validation; moreover, the
validation accuracy tends to follow the training curve, implying that the hybrid model has robustness with
improved generalization for brain tumor classification. The ROC curve and AUC (Fig. 11) illustrate the model’s
performance in distinguishing between the four brain tumor classes: glioma, meningioma, pituitary, and normal
brain tissue for the base model, pre-trained models, and hybrid model. Each curve represents the true positive
rate versus the false positive rate for a specific class using a one-vs-rest approach. The area under the curve (AUC)
for each class exceeds 0.98, with meningioma and pituitary classes achieving perfect AUCs of 1.00 in the hybrid
model. This indicates a high level of discriminative power and excellent classification performance across all
categories. The near-ideal ROC profiles confirm the model’s robustness and effectiveness in handling multi-class
medical image classification. Figure 12 presents performance comparisons of the base model, pre-trained model,
and proposed hybrid model, using five metrics: accuracy, precision, sensitivity, specificity, and F1-score. Among
the discussed methods, the proposed hybrid model (a combination of base model, AlexNet, and ResNet50 )
performed much better according to all five metrics. In other words, this suggests that the model has gained
from the powers of both networks in a better way. More specifically, it achieved higher accuracy, which means
better overall classification. Its improved precision and specificity reflect a reduced false positive rate. Besides,
with this model, a little more sensitivity is shown, implying it can catch the true positives more reliably. Overall,
its balanced performance across metrics makes the combination of AlexNet and ResNet50 much more robust
and effective in this classification task. Figure 13 provides a quick comparison of the test accuracy for various
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classifiers. In this instance, the MLP classifier achieved the highest test accuracy at 94.82%, followed by SVM
at 93.93%, KNN at 93.92%, and Random Forest at 87.67%. This visualization effectively highlights the classifier
that performs best for the proposed approach. Figure 14 compares the proposed approach, which integrates
ResNet50 and AlexNet with an MLP classifier and various optimization algorithms, showing that the Adam
optimizer achieves the highest performance score of 94.82. The test accuracy of the proposed model significantly
improves after incorporating base models, pre-trained models, with combinations of ResNet50 and AlexNet,
yielding higher accuracy than those utilizing only one model or none at all, underscoring the effectiveness of
deep learning models (Table 6). Additionally includes estimated standard deviations (+), derived from 10-fold
cross-validation, to reflect the consistency of model performance. More importantly, no prior work has focused
on CT scan images for the task at hand. Table 7: Comparative performance analysis for brain tumor classification
with MRI modality. From this, it can be perceived that the proposed technique, applied to the CT scan modality,
reflected the highest accuracy on all the performance metrics used for evaluation. All studies are based on MRI
data, while our work focuses on CT scans. This comparison is included only for general context, not direct

benchmarking.

Discussion

The proposed hybrid model outperformed the baseline and intermediate models in both accuracy and robustness.
As illustrated in the confusion matrices (Fig. 8), the final hybrid model combining handcrafted features (LBP,
HOG, median intensity) with deep features from ResNet50 and AlexNet achieved the highest true positive
rates across all four classes, significantly reducing misclassification compared to individual models. Similarly,
the training and validation accuracy curves (Fig. 10) show smoother convergence and less overfitting in the
hybrid model, reflecting better generalization. This improvement is primarily attributed to the complementary
nature of the features: handcrafted descriptors capture localized textural patterns relevant in CT images, while
deep CNN features provide high-level semantic abstraction. Moreover, pre-processing techniques such as
contrast enhancement and median filtering normalized image variability and reduced noise, contributing to
consistent feature learning across varied CT inputs and reducing noise-induced variance, and facilitating better
generalization. Data augmentation addresses class imbalance and data scarcity, further contributing to model
robustness by exposing the classifier to a wider range of intra-class variations. Feature selection via SelectKBest
further reduced dimensionality, minimizing model complexity while preserving discriminative power. The
integration of features from multiple domains enriches the feature space, enabling the MLP classifier to learn more
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Fig. 11. Multi-Class ROC curve and AUC of the base model, pre-trained models and proposed hybrid model.

discriminative representations. Specifically, ResNet50 brings robust residual connections and deep abstraction
capability, allowing the model to capture complex tumor characteristics. AlexNet, though shallower, contributes
complementary patterns, often focusing on local features, which seem particularly beneficial for certain tumor
classes such as meningioma and normal tissue (as observed in Fig. 11 ROC curves with AUC=1.00). The hybrid
model also demonstrates a smaller gap between training and validation curves (Figs. 9 and 10), suggesting
reduced overfitting and improved generalization. Unlike the base model or individual CNN combinations, the
hybrid model benefits from both local and global information. The MLP classifier, used as the final decision
layer, is well-suited for integrating these heterogeneous feature types due to its flexibility in learning nonlinear
relationships. Taken together, the hybrid architecture not only enhances classification accuracy but also achieves
high AUC across all tumor classes, reflecting excellent discriminative power. Additionally, as shown in Table V, the
proposed hybrid model achieves the highest testaccuracy (94.82%), surpassing both the baseline and intermediate
models, thus validating the effectiveness of the combined feature approach. These results demonstrate that the
hybrid model effectively addresses the inherent complexity of brain tumor classification in CT images and
provides a robust and generalizable solution. Meanwhile, deep features from pre-trained CNNs capture high-
level spatial and contextual patterns that are learned from large-scale datasets, enhancing the model’s ability to
generalize. Together, these components enabled the model to learn more robust and generalized representations,
ultimately leading to improved performance. This superiority is quantitatively demonstrated in Fig. 12, where
the hybrid model consistently outperforms all other models across key performance metrics, including accuracy,
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Performance Metrics Comparison
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Fig. 12. Efficiency of different metrics based on base model, different pre-trained models and proposed hybrid
model.
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Fig. 13. Comparative analysis of the proposed hybrid model based on the various classifiers.
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Methods Test Accuracy

HOG + Median intensity + LBP+
Kbest + MLP (base model)

HOG + Median intensity + LBP + Kbest +

79.640.79+0.0031

ResNet50 + MLP 90.00 0.90+0.0024
HOG + Median intensity + LBP + Kbest +

AlexNet + MLP 94.60 0.94+0.0027
HOG + Median intensity + LBP + Kbest + 94.82 0,944 0.0021

ResNet50 + AlexNet + MLP (proposed hybrid model)

Table 6. Comparison of proposed method with the combination of pre-trained models and without pre-
trained models.

Method Modality | Test accuracy (%)
Parallel deep CNN* MRI 97.33
AlexNet?* MRI 98.15
AlexNet + GRU? MRI 97
SVM + CNN? MRI 98.49
SVM with Zernike Moment® MRI 90.99
SVM +ELDP? MRI 94.44
HOG Fusion with ResNet50% MRI 88
Ervon ol Geomarial |y
HOG + Median intensity + LBP

KBest + ResNet50 + AlexNet + CT scan | 94.82
MLP (Proposed approach )

Table 7. Comparison of other studies with propose model.

precision, sensitivity, specificity, and F1-score. The proposed hybrid model leverages complementary features
and robust pre-processing to enhance generalization, reduce overfitting, and improve multi-class classification
accuracy on CT brain tumor data. Its superior performance across key metrics validates the design choices and
demonstrates its effectiveness in real-world clinical scenarios. Beyond its technical performance, the proposed
automated hybrid model has strong potential for integration into clinical workflows. It can serve as a rapid,
objective, and reproducible second-opinion system for brain tumor detection and classification from CT scans,
helping radiologists prioritize urgent cases, reduce diagnostic delays, and minimize inter-observer variability.
This is particularly valuable in resource-limited settings or emergency departments where MRI may not be
feasible. The model’s ability to accurately differentiate glioma, meningioma, pituitary tumors, and normal brain
tissue supports more informed treatment planning and monitoring, while its high sensitivity and specificity can
facilitate earlier interventions and potentially improve patient outcomes. By automating routine screening and
providing consistent decision support, the model could significantly reduce radiologists’ workload and enhance
the efficiency of patient care.

Conclusion

This study presented a novel hybrid learning framework for the detection and classification of brain tumors
from CT scan images, focusing on four classes: glioma, meningioma, pituitary tumor, and normal brain. The
proposed approach integrates handcrafted features (LBP, HOG, median intensity) with deep features extracted
from ResNet50 and AlexNet, followed by feature selection using SelectKBest and classification via a Multilayer
Perceptron. By combining localized textural descriptors with high-level semantic representations, the model
achieved superior performance compared to individual baseline and intermediate models, reaching a maximum
test accuracy of 94.82% and achieving high AUC values across all classes. Robust pre-processing steps, including
contrast enhancement, median filtering, and data augmentation, contributed to the model’s ability to handle
class imbalance, reduce noise-induced variability, and generalize to unseen cases. The hybrid architecture
effectively addressed challenges of model complexity and generalization by leveraging complementary feature
domains, enabling the classifier to capture both local and global tumor characteristics. The findings highlight
the clinical potential of the proposed model as a decision-support tool for radiologists, providing fast, accurate,
and automated classification of CT brain images. By enhancing diagnostic confidence and reducing manual
workload, this framework can serve as a valuable component in modern computer-aided diagnosis pipelines.
With further validation and optimization, it could be deployed in real-world clinical environments to improve
diagnostic efficiency and patient outcomes.

Limitations and future work
The proposed hybrid model demonstrated high classification accuracy and robustness, and several limitations
remain. First, the dataset used in this study, although diverse in terms of tumor types (glioma, meningioma,
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pituitary, and normal), was collected from a single online source (Radiopaedia) and may not fully represent the
variability seen in multi-institutional clinical settings. This could limit the generalizability of the results. Second,
the dataset size is relatively modest, and although data augmentation mitigated class imbalance to some extent,
performance on rare tumor types may still be biased. Third, the study relied solely on CT imaging; while this
modality is widely accessible, the absence of complementary imaging modalities such as MRI may have limited
the ability to capture certain tumor characteristics. Finally, model explainability was not the primary focus of
this study, which could hinder its direct clinical adoption. Future work will address these limitations through
several directions. First, additional hybrid architectures will be explored, incorporating advanced deep learning
backbones (e.g., DenseNet, EfficientNet, Vision Transformers) and a wider range of handcrafted descriptors
to evaluate their impact on accuracy and efficiency. Second, multimodal imaging integration (CT +MRI)
will be investigated to leverage complementary anatomical and soft-tissue information. Third, explainable AI
(XAI) techniques will be developed to provide interpretable decision-making outputs, enhancing trust among
clinicians. Fourth, large-scale clinical validation will be conducted across multiple healthcare institutions
to assess real-world performance under varied acquisition protocols and patient demographics. Finally,
optimization strategies aimed at reducing computational demands will be pursued to enable fast, resource-
efficient deployment in routine clinical workflows.
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Data is provided within the manuscript.
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