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A B S T R A C T

Osteoarthritis (OA) affects nearly 240 million people worldwide. It is a common degenerative illness that 
typically affects the knee joint OA causes pain, and functional disability, especially in older adults is a common 
disease. One of the most common and challenging medical conditions to deal with in old-aged people is the 
occurrence of knee osteoarthritis (KOA). Manual diagnosis involves observing X-ray images of the knee area and 
classifying it into different five grades. This requires the physician’s expertise, suitable experience, and a lot of 
time, and even after that, the diagnosis can be prone to errors. Therefore, researchers in the machine learning 
(ML) and deep learning (DL) domains have employed the capabilities of deep neural network (DNN) models to 
identify and classify medical images in an automated, faster, and more accurate manner. Combining multiple 
imaging modalities or utilizing three-dimensional reconstructions can enhance the accuracy and completeness of 
2D Images in diagnostic information. Hence to overcome the drawbacks of 2D imaging, the reconstruction of 3D 
models using 2D images is the main theme of our research. In this paper, we propose a deep learning-based 
model for the detection and classification of the early diagnosis of arthritis. It is a four-step procedure starting 
with data collection followed by data conversion. In this step, our proposed model deforms the target’s convex 
hull to produce a 3D model. Herein, a series of 2D photos is utilized, along with surface rendering methods, to 
create a 3D model. In the third step, the feature extraction is performed followed by mesh refinement. The 
chamfer loss is optimized based on the rotational shape of the leg bones, and subsequently, the weight of the loss 
function can be allocated to the target’s geometric properties. We have used a modified Gray Level Co-occurrence 
Matrix (GLCM) for feature extraction. In the fourth step, the image classification is performed and the suggested 
optimization strategy raises the model’s accuracy. A comparison of results with current 3D reconstruction 
techniques proves that the suggested method can consistently produce a waterproof model with a greater 
reconstruction accuracy. The deep-seated intricacies and distinct patterns across arthritic phases are estimated 
through the extraction of complicated statistical variables combined with power spectral density. The high- 
dimensional data is divided into separate, easily observable groups using the Lion Optimization Algorithm 
and proposed distance metric. The F1 Score and Jaccard Metric showed an average of 0.85 and 0.23, indicating 
effective differentiation across clusters.
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1. Introduction

A common degenerative illness that typically affects the knee joint is 
osteoarthritis (OA), which causes pain and functional disability, espe
cially in older adults is a common disease. The diagnostic and moni
toring techniques for OA are crucial because it has significant global 
prevalence and detrimental effects on everyday activities. Conventional 
diagnostic modalities like Computed Tomography (CT) scans, Magnetic 
Resonance Imaging (MRI), and X-rays [1] are reliable but have several 
drawbacks, including high prices, radiation, and impracticability for 
routine monitoring, etc. Thus, a monitoring system that is dependable, 
affordable, and non-invasive is essential.

For instance, similar techniques are deployed in other medical con
ditions, e.g., cardiac-related problems, and are diagnosed using LV 
segmentation since it has a substantial impact on comprehending 
normal anatomy and the ability to discriminate between abnormal or 
diseased. The Mask R- Convolutional Neural Networks (CNN) model 
[20] performs better than SegNet architecture on evaluation metrics 
such as accuracy and precision. Hence, the neural architectures are 
deployed in this work.

To address the limitations of distributed data sharing, a novel 
federated ED framework based on the sequence perturbation privacy- 
preserving approach (FedED-SegNAS) is predominant in medical im
ages. First, to address the lack of.

interpretability in deep learning models, fuzzy logic into CNNs could 
be incorporated to enhance their ability for expressing genetic ambi
guity with high interpretability and tolerable accuracy. Employing the 
neural architecture search method to improve the federated neural ar
chitecture, especially using the particle swarm optimization technique 
to automatically search for the ideal neural architecture at various 
phases in Federated Learning (FL) to improve communication efficiency 
[19].

The standard methods for analyzing arthritis are X-ray and MRI [1]. 
X-ray is an imaging diagnostic tool used for arthritis. Arthritis is a group 
of conditions characterized by inflammation of the joints, leading to 
pain, swelling, stiffness, and reduced joint mobility. X-rays help di
agnose and monitor arthritis by providing images of the bones and 
joints. As the cartilage in the joint wears away due to arthritis, the space 
between the bones may decrease. Osteophytes or bone spurs may 
develop around the edges of the joints. These are bony projections that 
can be seen on X-rays.

Different types of arthritis may have specific characteristics visible 
on X-rays. For example, in OA, X-rays show characteristic joint changes, 
such as osteophytes and joint space narrowing. In Rheumatoid Arthritis 
(RA), X-rays may reveal signs of inflammation, joint erosion, and 
changes in the soft tissues around the joints. This helps the healthcare 
providers ensure accurate placement of medications into the affected 
joint. X-ray imaging for arthritis diagnosis and management is part of a 
comprehensive approach that includes clinical evaluation, medical his
tory, and sometimes additional imaging studies to understand the con
dition entirely.

If the structure of joints is not as good as that of straight bones, bone 
deterioration cannot be seen on radiography [2]. Fig. 1 illustrates an X- 
ray image of a joint affected by arthritis. The patient may be diagnosed 
with arthritis based on the radiographic imaging. Thus, it is clear that 
the X-ray test has a higher explicitness and a lower sensitivity. MRI is a 
powerful imaging technique widely used in medical diagnostics, 
including assessing arthritis.

One of the primary advantages of MRI is its ability to provide 
detailed images of soft tissues, including cartilage, ligaments, tendons, 
and the synovium (lining of the joint). MRI can reveal changes in bone 
structure, such as erosions or bone marrow abnormalities, which are 
common in inflammatory arthritis. Contrast-enhanced MRI may 
enhance the visibility of active inflammation and assess the extent of 
bone involvement.

The locations of the cartilage tissue injury are depicted in Figs. 2(a) 

and 2(b). However, a hefty dose of radiation is emitted during an MRI 
scan and has adverse effects. MRI continuous scanning is becoming more 
problematic and causes erosion, so it’s preferable to switch to a different 
non-invasive technique. X-rays or traditional CT/MRI scans are 2D. 
These valuable tools are used in medical diagnostics and have draw
backs. For example, 2D images provide limited depth perception, mak
ing it challenging to assess the spatial relationships between structures 
in three dimensions accurately. This limitation may lead to difficulties in 
precisely understanding the extent of abnormalities, especially in com
plex anatomical regions.

In 2D imaging, overlapping structures can obscure the view of un
derlying or adjacent tissues. Superimposition in 2D imaging [3] may 
hinder accurately identifying specific structures, making it challenging 
to differentiate between different tissues or abnormalities. In addition, 
they have limited contrast for soft tissues. This limitation can make 
distinguishing between various soft tissues complex, potentially 
affecting the detection of subtle abnormalities or early stages of diseases. 
2D images capture a static snapshot at a particular point in time. Dy
namic changes, such as joint movements or blood flow, are poorly 
represented. This can limit the ability to assess functional aspects or the 
progression of certain conditions. 2D images may not provide detailed 
information about the texture and composition of tissues. Certain dis
eases manifest as changes in tissue texture, and these subtleties may be 
challenging to discern in 2D images alone. Recent advancements in 
medical imaging technologies aim to overcome some of these limita
tions. Techniques such as 3D imaging, multi-slice CT, and advanced MRI 
protocols provide more detailed spatial information and improve the 
overall diagnostic capabilities. Combining multiple imaging modalities 
or utilizing three-dimensional reconstructions can enhance the accuracy 
and completeness of diagnostic information. Hence, to overcome the 
drawbacks of 2D imaging, the reconstruction of 3D models using 2D 
images is the main theme of our research.

The motivation of this research is that traditional 2D imaging 
methods (e.g., X-rays) do not provide comprehensive details of knee 
joint structures. Thus, we should develop an advanced 3D imaging 
model for enhanced visualization. Herein, we propose a 3D model that 
offers a more precise visualization of the anatomical features, improving 
diagnostic accuracy for knee arthritis. It is a four-step procedure. In the 
first step, the data is collected. We have used public medical imaging 
data. In the second step, the data conversion is performed. In this step, 
our proposed model deforms the target’s convex hull to produce a 3D 
model. Herein, a series of 2D photos is utilized, along with surface 
rendering methods, to create a 3D model. In the third step, the feature 
extraction is performed. In this phase, the mesh refinement, the chamfer 
loss, is optimized based on the leg bones’ rotational shape; subsequently, 
the weight of the loss function can be allocated to the target’s geometric 
properties. We have used a modified Gray Level Co-occurrence Matrix 
(GLCM) for feature extraction. In the fourth step, image classification is 

Fig. 1. Knee Osteoarthritis X-Ray.
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performed, and the suggested optimization strategy improves the 
model’s accuracy. The key features of our proposed model are given 
below. 

• Early Detection: Our proposed 3D model helps detect early signs of 
arthritis by offering detailed assessments of joint degeneration, 
which may not be apparent in standard 2D images.

• Tailored Interventions: By creating patient-specific 3D models, cli
nicians can assess the severity and progression of arthritis more 
accurately, leading to personalized treatment plans, whether phys
ical therapy, medication, or surgical intervention.

• Surgical Precision: In cases requiring surgery, 3D models allow sur
geons to plan and execute procedures more precisely, reducing the 
risk of complications and improving outcomes.

• Reduced Need for Invasive Tests: With more accurate 3D classifica
tions, the need for more invasive diagnostic procedures like 
arthroscopy can be reduced.

• AI and Machine Learning Integration: Integrating machine learning 
and AI techniques with 3D modeling can automate the Classification 
of knee arthritis, improving the efficiency of diagnoses and reducing 
the workload on radiologists and clinicians.

• Faster Diagnosis: Automated classification systems using 3D models 
can provide quicker diagnostic results, essential for early treatment 
and better patient outcomes.

• Reduced Healthcare Costs: By improving the accuracy of early 
diagnosis and minimizing the need for more invasive procedures, 3D 
model-based Classification could potentially reduce long-term 
healthcare costs associated with managing knee arthritis.

Our key contributions are given below.
Our Contribution 

• We propose a non-invasive approach used for the early detection and 
Classification of knee arthritis is explored through 3D image recon
struction derived from 2D images.

• In this research, complex nuances and unique patterns observed 
throughout different stages of arthritis are analyzed by extracting 
intricate statistical features combined with power spectral density.

• The proposed model received high-dimensional data is then 
segmented into distinct, easily interpretable groups using a modified 
Lion Optimization Algorithm and a novel distance metric.

• In our proposed model, the chamfer loss is minimized and optimized 
based on the rotational alignment of the leg bones, allowing the loss 

function to be weighted according to the target’s geometric charac
teristics, using appropriate standard deviation values.

• We have performed the experimentation and the quantitative eval
uation of the proposed models is evaluated using state of art deep 
learning models.

In the related work section, we discuss imaging and Classification. 
Furthermore, the feature extraction using the GLCM and the classifica
tion of arthritis using the Lion Optimization Algorithm (LOA) are dis
cussed in section 3. Section 4 reviews and wraps up the simulation 
results.

2. Related work

Three-dimensional reconstruction technology based on CT images is 
mostly used in medicine to calculate the best site for radiation therapy 
and to simulate general surgical procedures. Many studies on the 3D 
reconstruction of medical pictures have been done recently. Some re
searchers employ traditional reconstruction algorithms like volume 
rendering and surface rendering to rebuild medical pictures. In [4], 
segment pulmonary nodules using Mask RNN and then apply the ray 
casting approach to reconstruct the target. In [5], 3D reconstruction of 
head CT data using the marching cubes and ray casting algorithms, 
respectively. Certain researchers have enhanced the reconstruction al
gorithm. In [6], based on visual hyper-spherical mapping, a technique to 
rebuild a watertight 2-manifold 3D bone surface model from CT scans is 
presented. This technique uses CT scans to create a 3D model of the 
femur and hip bones.

Nevertheless, the model failed to create a watertight surface at the 
right femur because of the impact of the CT slice’s significant thickness. 
In [7] provide a sophisticated 3D reconstruction approach for ray cast
ing that can minimize the number of rays by choosing the right bounding 
box. This approach can save memory and reconstruction time compared 
to the conventional methodology. There is a projection link between the 
point cloud and the triangular mesh. The sparse coefficient matrix is 
constructed using this relationship. The dictionary and matrix should 
then be updated iteratively using the objective function to complete the 
reconstruction. A few grouping techniques in the lettering define RA. 
MATLAB has refined several forms of support vector machines, such as 
polynomial-based Support Vector Machines (SVMs), Pearson-based 
SVMs, Gaussian-based SVMs, SVM with a straight section, Logistic 
Regression, Naïve Bayes, and Multi-Layer Perception (MLP). Strategic 
regression analysis returns class probabilities by taking an instantaneous 

Fig. 2. (a) Top view of the knee joint using MRI scan; (b) Kinematic analysis of the knee joint with an MRI scan.
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combination of vectors and applying a sigmoid limit to it. Usually, limits 
are established by assessing the most remarkable probability. A Bayesian 
classifier determines the likelihood of a class of given features by uti
lizing Bayes conjecture and a strong desire for self-sufficiency. As a 
result, the component factor allocations are self-sufficient and do not 
pose a financial burden on the class. The central 60 points of a multilayer 
perceptron, often called a neural network, are organized in several 
layers to create a network. Regressive proliferation of faults can lead to 
the oversight of the construction of frameworks. The information in a 
vector of information will be distributed using the yield evaluation 
methodology.

To maximize the edge between data classes, the SVM is a coordinated 
learning process that uses a large amount of data [8]. SVMs use input 
data that has been computed using the best edge hyperplanes as aiding 
vectors to present the perceptive metrics required for decision-making 
depending on fresh information. Consequently, SVMs offer parcel 
works that attempt to partition data that is difficult to separate inside 
their proprietary space into other component spaces better. Research on 
ensemble classifiers is distinct from different fields. The notion of a 
classifier was brought up by the fact that specific articles generate a 
range of mistakes, which motivates the results party to reduce differ
entials and produce more accurate results.

Using K-implies cluster analysis, an early diagnosis of rheumatoid 
infection is also attempted by considering four distinct criteria, specif
ically clinical information about the Rheumatoid Factor, SJC, anti-CCP, 
and ESR [9]. After K = 4 was chosen, the data from 60 patients was split 
up into four categories. The study’s findings suggest that two of the four 
components may be able to predict rheumatoid joint inflammation, 
according to the K-implies grouping computation. This categorization 
model indicates that 84% of the assessment results are positive. Also, 
datasets that included randomly chosen data from 300 patients at 
Vanderbilt University Medical Centre were examined using electronic 
health records, Natural Language Processing (NLP) frameworks, and 
standardized information.

In [10] suggested utilizing segment data and clinical data gathered in 
the first two years after diagnosis to utilize Random Survival Forests 
(RSF) to forecast the onset of RA. Their study’s findings indicate that the 
mean total error using testing and preparation data is 0.233 and 0.187, 
respectively. The time-dependent explicitness and affectability, using a 
time scale of 1 and 7 years, are, respectively, 0.79–0.80 and 0.43–0.48. 
Furthermore, the categorization of different infections based on groups 
and individuals has been discussed. [11] Recently shown that group 
methods may analyze valvular heart disease with three classifiers: 
Support Vector Machine (SVM), Multilayer Perceptron (MLP), and K- 
Nearest Neighbors (KNN). Lung runnet classification, filter design, and 
fault classification are discussed in [15–17].

[21] Deep Learning has revolutionized medical image processing by 
enabling automation in tasks like segmentation, classification, and 
reconstruction. U-Net remains a cornerstone architecture for image 
segmentation, particularly in biomedical applications. Recent ad
vancements, such as Attention U-Net, improve feature extraction by 
focusing on relevant regions, enhancing segmentation accuracy [22].

Generative Adversarial Networks (GANs) have been employed in 
image reconstruction to synthesize high-quality images from noisy or 
incomplete data. Autoencoders have also been used for dimensionality 
reduction and reconstruction in volumetrics. Furthermore, CNNs and 
their derivatives, such as ResNet [23], have successfully classified dis
ease severity from imaging datasets. However, challenges persist, 
including the scarcity of annotated datasets and the need for explainable 
AI in clinical applications [24]. Transfer learning and synthetic data 
augmentation techniques are frequently adopted to address these issues 
[25].

The discussions show that a non-invasive diagnosis for the compu
tation of continuous data with accuracy is the key objective of the focus 
of the research. This could be achieved through effective image pro
cessing and classification techniques.

3. Proposed model

In this section, we present our proposed model. We have used a 
public dataset named Osteoarthritis Initiative (OAI). Limited data is 
collected by in-shoe sensing pads (By measuring the intensity of arthritis 
directly from patients).

3.1. Data collection

The Osteoarthritis Initiative (OAI) dataset is well-known in osteo
arthritis research [18]. It is a longitudinal dataset that includes clinical, 
radiographic, and MRI data, making it valuable for studying the pro
gression of knee osteoarthritis. The primary goal of the OAI is to un
derstand the development and progression of knee osteoarthritis. The 
dataset includes a variety of data types, clinical data, radiographic im
ages (X-rays), and magnetic resonance imaging (MRI) scans of the knee 
joint. This data is collected at multiple time points, allowing for exam
ining changes in participants’ conditions over time [19].

This longitudinal aspect is crucial for understanding disease pro
gression. The results are also validated using the OAI Imorphics dataset 
for better accuracy and precision. The in-shoe system is another way to 
determine how foot pressure is distributed [12]. The four points that 
make up the sole support and bear most of the body’s weight regarding 
balance. Its 15-ft pressure points cover all four 70-ft pressure points. 
Figs. 3 (a) & (b) show that the transducer was positioned beneath the 
hallux and the first, second, and fourth metatarsal heads. A test was 
conducted on over 50 persons across various age groups and genders, 
and it was concluded that about 90% of the individuals were accurately 
recognized.

The text file contains the dataset’s collected data, which are then 
saved for later analysis. The value of a 16 × 16 matrix is further trans
formed into 256 87 single-line data and saved in a CSV (Comma-Sepa
rated Value) format. For the relevant patient, this CSV file and the target 
value are regarded as labeled data. Subsequently, the CSV file’s 256 
sensing point values are transformed into a heat map image for simple 
interpretation. The jet map algorithm is used to do this heat map con
version and determine the lowest and greatest pressure values in this 
algorithm, then scale the pressure values [16].

The scaling from minimum to maximum, each set of values is given a 
color that is identified using pressure. For instance, the intermediate 
values will be colored by the lowest and most significant values, which 
are represented by the colors blue and red, respectively. The output 
image is displayed in Fig. 4 using a jet map. We can see that most colors 
are smoother and more precise. These images are not clear. Therefore, 
we have used the Keiser approach to get smooth pictures. The refined 
images are cleared using machine learning algorithms to handle and 
produce better classification results.

Fig. 3. (a) Pressure locations on the foot (b) The basis for biometric identifi
cation is variations in the foot pressure pattern.
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3.2. Data conversion

This section presents the conversion of 2D images to 3D meshes. This 
process involves creating a three-dimensional representation from two- 
dimensional data. A 2D image is chosen for conversion into a 3D mesh. 
Ideally, the image has distinguishable features and clear contrasts. We 
have used edge detection to highlight prominent features in the image. 
This helps identify boundaries between different regions. Consider each 
pixel in the image as a node in the mesh. The grayscale intensity of the 
pixel can be used as a basis for the mesh height.

The following steps are followed for the texture mapping of 3D im
ages [12]. 

1. Height Map Generation: Convert the 2D image into a height map, 
where pixel values represent elevations. Darker regions may corre
spond to lower elevations, while lighter regions may represent 
higher elevations.

2. Extrusion: Extrude the 2D image along the height axis based on the 
values in the height map. This extrusion creates a three-dimensional 
effect.

3. Mesh Pooling: The pooling operation reduces the number of vertices 
and faces, effectively downsampling the mesh, as shown in Fig. 5 and  
See Fig. 6.)

4. Mesh Smoothing: Apply smoothing algorithms to refine the mesh and 
create a more visually appealing 3D representation.

5. Texture Extraction: Extract textures from the original 2D image.
6. Texture Mapping: Apply the extracted textures onto the corre

sponding regions of the 3D mesh. This step enhances the visual re
alism of the 3D representation.

7. Manual Refinement: Depending on the quality of the initial results, 
manual refinement of the mesh may be necessary to achieve the 
desired outcome.

Fig. 6. shows the reconstruction process starts with acquiring 2D 
images from medical imaging modalities like MRI, CT, or X-rays. Each 
image can be represented as a discrete intensity function: I(x, y) : R2→R 
where I(x, y) denotes the intensity value at pixel coordinates (x, y). The 
3D volume is reconstructed by stacking these 2D slices along the z-axis 
to form a 3D grid of voxels: V(x, y, z) : R3→R where V(x, y, z) represents 
the intensity at voxel (x,y,z). Surface reconstruction involves extracting 
isosurfaces from the 3D voxel data using methods such as the marching 
cubes algorithm. An isosurface is defined as the set of points satisfying: 
S = {(x, y, z)|V(x, y, z) = T } where T is a threshold intensity value. The 

algorithm computes triangular meshes to approximate S. For accurate 
reconstruction, slices are aligned using rigid or non-rigid 
transformations.

A transformation matrix T in (1) typically consists of rotation (R) and 
translation (t) components, where R∈R3×3 and t∈R3. 

T = [R t 0 1].. (1) 

3.3. Feature extraction

We have used the GLCM [13] for feature extraction. Before Classi
fication, the image dataset is once more pre-processed using a neural 
network that has already been trained. The procedure of extracting 
features uses the GLCM. This approach characterizes the coarseness and 
smoothness of the pictures. It provides specific characteristics 

Fig. 4. (a) Data collected from Pressure locations on the foot (b) Heat Map analysis of a foot.

Fig. 5. Convolution of edge features (a-e) during Mesh Pooling.
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depending on the image dataset for categorization [10]. The dataset is 
classified using the chosen ten classifier methods such as k-Nearest 
Neighbor (k-NN), Naïve Bayes (NB), SVM, Particle Swarm Optimization 
(PSO), Ant Colony Optimization (ACO), Social Spider Algorithm (SSA), 
Cockroach Swarm Optimization (CSO), Lizard Learning Algorithm 
(LLA), African Wild Dog (AWD) and LOA is shown in Fig. 7.

Algorithm 1 is a matrix that represents the joint probability of two 
pixel intensities occurring together at a given spatial relationship. The 
GLCM is calculated by comparing each pixel with its neighboring pixels 
in a specified direction. The matrix elements (GLCM entries) correspond 
to the frequency of co-occurring intensity pairs [13]. 

We have suggested a modification in GLCM is a square matrix C of 
size G × G, where: 

C(i, j) =
∑(p,q)

(p,q)

{

1, if I(p, q) = i and I(p+Δx, q+Δy)

= j,0, otherwise……. (2) 

Where (p,q) is a pixel location in the image, Δxand Δy defines the 
relative position of the neighboring pixel (direction of comparison), and 
i and j are gray levels (ranging from 0 to G − 1).

Herein, we normalize and divide each element by the total number of 
co-occurring pixel pairs. 

Cnorm(i, j) =
C(i, j)

∑G− 1
i=0

∑G− 1
j=0 C(i, j)

… (3) 

Step 3 From the normalized GLCM, several statistical texture features 
are computed. Some common features include: Contrast =
∑G− 1

i=0
∑G− 1

j=0 (i − j)2
.Cnorm(i, j).

This measures the intensity contrast between a pixel and its neighbor 
over the entire image. 

Homogeneity =
∑G− 1

i=0

∑G− 1

j=0

Cnorm(i, j)
1 + |i − j|

(4) 

If the limit of agreement range is narrow, the two methods agree 
well, ensuring reliable RA severity grading i.e.,

Range = d ± 1.96sd where, 

sd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(X1i − X2i − d)2

√

(5) 

The GLCM for the image is computed in different directions, and the 
GLCM features such as contrast and homogeneity are extracted. These 
features are fed as input for a machine learning classifier to categorize 
images based on their texture.

3.4. Image classification

We have used a modified Lion Optimization Algorithm (LOA), a 
nature-inspired optimization algorithm based on the social behavior of 
lions. It was introduced as a metaheuristic optimization algorithm in 
2016 [14]. The algorithm is designed to simulate the cooperative 
hunting behavior of lions in nature to find optimal solutions to optimi
zation problems. Algorithm 2 shows the working mechanism.  

Fig. 6. Flow diagram depicting the 3D model of an input 2D image.

Fig. 7. Arthritis Data Classification.
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The positions of lion at random for encircling the prey. The inspi
ration of this algorithm is by the fact that the opposition of the prey 

towards the attack of lion group is denoted by X
∨

(x1
∨
, x2
∨
, x3
∨
, .…xN)

∨

where 
xi ∈ [ai, bi]is an optimum solution over a space limit of ‘N’ for a real co- 
ordinates ‘a’ and ‘b’. 

PREY =
∑

Hunters(x1, x2, .…xNVar)
/

No.ofHunters (6) 

For every new change in position of prey is given by, 

PREYʹ = PREY + rand(0,1) (7) 

(3.36)

The change in position or alignment of hunters for encircling the 
prey is, 

Hunterʹ =
{

rand(Hunter, PREY),Hunter < PREY
rand(Hunter, PREY),Hunter > PREY (8) 

The success rate at which an optimum solution is attained is defined 
by, 

S(i, t, p) =

⎧
⎨

⎩

1,Bestt
i,p, p < Bestt− 1

i,p

0,Bestt
i,p = Bestt− 1

i,p
(9) 

3.4.1. Proposed TAODV as distance metric in classifier
Based on the idea deduced from wireless ad-hoc networks, a modi

fication is suggested in the previously stated classifier in terms of dis
tance measurement between two neighbors is presented to prevent 
misclassification. To make it easier to extract the type of arthritis and its 
extent, this metric is incorporated into classifiers to assess the trust of its 
neighbors with an established threshold which is shown in Table 1.

The values in its opinion about a neighboring node are used to 
modify predefined trust judgment rules. The weight representation wAB 
= (bAB, dAB, uAB) includes the opinion of belief, disbelief, or 
uncertainty. 

• bAB: To prevent outliers, the belief of node A on node B will be 
computed based on the compactness of node B’s five nearest neigh
bors. The degree of belief increases with decreasing distance.

• dAB: The distance equation ∣A − B∣ is used to compute the disbelief 
from node A to node B. Disbelief increases as distance increases.

• uAB: The degree of uncertainty between nodes A and B is calculated 
using entropy. Less entropy means that there is less uncertainty be
tween nodes A and B.

4. Experimentations, results, and discussion

There are four grades of arthritis whose statistical features are shown 
in Fig. 7. The boxplot for mean values showcases a narrow distribution 
for Grade 1 OA, suggesting a consistent disease manifestation at this 
preliminary stage. In contrast, the wider distribution observed for 
Grades 2, 3, and 4 signifies the varied manifestations of disease pro
gression, arising from varying degrees of osteophyte formation, cartilage 
degradation, synovial inflammation, and alterations in joint space [4]. 
The distribution of median values, another measure of central tendency, 
exhibits a wider range in Grade 3 OA. This distribution variation, 
indicative of significant divergence in the middle values of the knee 
sound signals, is likely attributable to the moderate to severe osteophyte 
formation and joint space narrowing typical of this stage.

Fig. 8, Boxplot represents the statistical properties of four grades in 
the Arthritis dataset. The efficacy of the resulting cluster formation was 
critically evaluated by adopting two recognized metrics: F1 Score and 
Jaccard Metric. These quantifiers collectively provide a benchmark for 
assessing the aptness of the implemented clustering. A dual-phase 
approach was applied to compute the F1 score for each data point. 
The average intra-cluster distance, denoted as ‘a’, was initially calcu
lated for each point concerning all other corresponding points in its 
cluster. Thereafter, the mean nearest-cluster distance, represented as ‘b’, 
was computed, which reflects the average spatial distance between the 
point under consideration and all points about the closest cluster, 
excluding its own. The F1 score was then obtained by employing the 
formula: F1 Score = (b − a)/max(a, b) [27, 28].

This score essentially offers a normalized measure of the distinction 
between the intra-cluster and the nearest-cluster distances. The co
efficient’s range is from − 1 to 1, with 1 implying a perfect match with its 
cluster, and − 1 suggesting a better fit with a different cluster. Addi
tionally, the Jaccard Metric was employed to assess the resulting cluster. 
A lower Jaccard Metric value indicates a superior clustering model, 
implying a more substantial separation among the clusters. This index 
measures each cluster’s mean “similarity” with its most analogous 
cluster. Here, similarity is defined as the ratio of within-cluster distances 
to between-cluster distances as shown in Table 2. Comparative tests 
demonstrate that relative to existing 3D reconstruction techniques, the 
proposed method consistently generates a waterproof model with su
perior reconstruction accuracy, as shown in Fig. 9.

In the LOA classifier, the population size is chosen to be 20, and the 
tuning parameters are assumed to be 0.5 and 0.75, respectively, as 
shown in Table 3. The constant rand is maintained at 0.5. The range of 
the flock is set between the range (− 25, 25) with a step size of 0.01. The 
PREY is decided upon the total number of attributes; hence is fixed at 
6.0. The Hunt ratio is 0.1. Chamfer Loss and Cosine Similarity are 
essential in rheumatoid arthritis (RA) image analysis, enhancing accu
racy in detecting joint deformities, bone erosion, and inflammation. 
Chamfer Loss helps compare predicted and actual joint structures, 
improving segmentation and tracking.

Disease progression in X-rays and MRIs. Cosine Similarity ensures 
precise feature matching, aiding in distinguishing RA-affected joints 
from healthy ones and monitoring changes over time. Integrating these 
techniques into deep learning models enhances automated RA diagnosis, 
enabling early detection and better treatment planning [26,27].

Table 3. shows the comparison in performance Metrics of ten clas
sifiers. The performance of LOA is compared against various other 
classifiers such as k-nearest Neighbor (k-NN), Naïve Bayes (NB), Support 
Vector Machine (SVM), Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO), Social Spider Algorithm (SSA), Cockroach Swarm 

Table 1 
Proposed Distance Metric for LOA Classifier.

Weight (wAB) Decision Grouping underclass

wA B >

Threshold
Belief No Pain

wAB <

Threshold
Disbelief Pain

wA B =

Threshold
Uncertainty

Compared against previous judgment:  

1. no previous opinion weight is updated as (0, 
0, 1) else

2. considered as noise if uncertainty is high
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Optimization (CSO), Lizard Learning Algorithm (LLA) and African Wild 
Dog (AWD). The efficient utilization of energy subsiding in nodes 
through a lifetime of static and mobile nodes for tracing the optimum 
solution under a search space is the major reason for the better perfor
mance of LOA. To achieve faster response and high sensitivity, static 
nodes are to be placed at the center of focus to all other neighbor nodes. 
Whereas the mobile nodes are supposed to be well distributed, to reduce 
execution time in response to quick chain processes but tend to increase 
power and consume more energy. Henceforth the difference in static and 
mobile nodes must be minimal for an energy efficient system. This in 
turn also ensures that there is devoid of traffic congestion for both the 
sample of collected data records.

5. Conclusion

Herein, we propose a non-invasive model for the early diagnosis and 
grading of knee arthritis using 3D Image reconstruction from 2D Images. 
The chamfer loss is reduced and is optimized based on the rotational 
shape of the leg bones. Subsequently, the weight of the loss function can 
be allocated to the target’s geometric properties using suitable standard 
deviation values. The outcomes of the Gray Level Co-occurrence Matrix 
(GLCM) for feature extraction were followed by the modified Lion 
Optimization Algorithm (LOA) classification. Thus, the optimization 
strategy raises the model’s accuracy to 90% due to a proposed distance 
metric named TAODV. We have performed several experiments, and the 
comparative tests show that, compared to current 3D reconstruction 
techniques, the suggested method can consistently produce a waterproof 
model with a greater reconstruction accuracy. It has 90% less chamfer 
loss and 30% more cosine similarity observed during reconstruction 
through effective transformation and analysis of 3D images. It is iden
tified through the generalization experiment that this method also has 
good reconstruction accuracy for other bones. The deep-seated in
tricacies and distinct patterns across arthritic phases are estimated 
through the extraction of complicated statistical variables combined 
with power spectral density. The high-dimensional data is divided into 
separate, easily observable groups using the Lion Optimization 

Fig. 8. Boxplot representing statistical properties of four different grades in the Arthritis dataset.

Table 2 
The reconstruction accuracy of different weight distributions.

σ chamfer loss cosine similarity

1.75 0.082 0.19
1.5 0.07 0.22
1.25 0.075 0.47

1 0.057 0.54
0.5 0.012 0.63
0.25 0.010 0.78
0.15 0.36 0.48

Fig. 9. 3D reconstructed Image of Bone.
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Algorithm and proposed distance metric. The F1 Score and Jaccard 
Metric showed an average of 0.85 and 0.23, indicating effective differ
entiation across clusters. Both Chamfer loss and cosine similarity play 
crucial roles in automated RA diagnosis. Chamfer Loss refines joint 
structure predictions, while Cosine Similarity improves RA feature 
comparisons. Integrating these methods has improved limit of agree
ment is between 0.082 and 0.36 respectively ensuring early detection, 
severity assessment, and personalized treatment planning for RA pa
tients. The future direction of work focuses on simulating stress, strain, 
and load-bearing properties to assess functionality. In addition, 
modeling movement and interaction of bones and joints under physio
logical conditions shall also be considered.
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