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In the contemporary digital era, the Internet of Things (IoT) and its applications have proliferated 
extensively, particularly within smart city environments, resulting in increased network traffic and 
raising the significance of efficient service discovery (SD) mechanisms. The social Internet of Things 
(SIoT) is an emerging paradigm that enables IoT devices to autonomously establish social relationships 
based on rules defined by their owners, thereby enhancing services through social relations. Things 
can interact with others; thus, the huge volume of traffic is increased. Each node or device could 
select an appropriate peer for the discovery of services, which is thus helpful for human beings. 
Although numerous service discovery and query processing models have been proposed in the recent 
literature. However, the existing state-of-the-art approaches often lack a comprehensive analysis of 
the parameters. Most traditional state-of-the-art models primarily focus on relationships or device 
similarity. Also neglecting the vital factors, for instance, query processing, efficiency, spatial-temporal 
dynamics, and service provisioning, etc. Thus, to solve this issue, this research proposes an exhaustive 
analysis of the main parameters needed to implement service discovery mechanisms for Social IoT 
and studies their relative importance based on a dataset of real objects. Based on the advanced 
parameters’ selection, an efficient service discovery algorithm is proposed. The proposed model 
emphasizes efficiency by optimizing the service discovery through reduced social graph traversal 
(i.e., fewer hops), consideration of the service types, and integration of caching mechanisms. We 
have conducted a comprehensive analysis of key parameters essential for implementing an effective 
service discovery mechanism in SIoT, prioritizing based on their importance. Experimental validation 
demonstrates the superiority of the proposed over state-of-the-art models, confirming its efficacy, 
scalability.
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The Internet of Things (IoT) has transformed the interaction between digital systems and the physical 
environment, enabling billions of smart devices (In a smart city) to communicate, share data, and perform tasks 
autonomously. By facilitating seamless data exchange without direct human involvement. IoT has ushered in 
unprecedented levels of automation, efficiency, and intelligence in smart cities1. According to recent predictions 
by Cisco, the number of connected devices is expected to reach 125 billion by 2030, implying that each individual 
may own and maintain approximately 15 smart devices2. This explosive growth has dramatically increased 
network traffic and data volume, as massive information streams flow through interconnected IoT systems in 
smart cities.

A key challenge in this ecosystem is the discovery of specific services offered by IoT devices3. IoT deployments 
expand globally, efficient service discovery, management, and interaction with these devices have become 
increasingly complex. To address these challenges, researchers are increasingly leveraging and investigating 
Digital Twin (DT) technology4.

A DT is a virtual representation of a physical device, replicating its components and dynamic behavior in real 
time5. More than just a mirror of a physical system, a DT is often equipped with predictive analytics to anticipate 
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future states and performance characteristics. Service discovery (SD) becomes a critical mechanism within this 
framework, enabling the network to identify and connect to the appropriate DTs that offer the required service 
functionalities6. Implementing efficient service two primary challenges: (1) The large number of IoT devices 
results in a vast and complex search space, and (2) The volume of service queries directed at these devices 
generates significant network traffic. Together, these factors necessitate the development of intelligent, scalable 
strategies to manage service discovery and ensure efficient system performance.

Recently, the social Internet of Things (SIoT)7 paradigm has emerged, integrating IoT with social networking 
concepts to form networks where smart objects establish social relationships and autonomously perform different 
tasks3,8–10. In SIoT, the objects interact and behave socially. These act as service providers and consumers within 
the network11,12. The introduction of social structures in the SIoT is inspired by Fiske’s relational models theory, 
which characterizes human social relationships13,14. As proven in15,16, the SIoT enables efficient discovery of 
short communication paths without requiring global network knowledge. Each node acts as a DT, and it is 
capable of autonomously forming social ties based on rules defined by its owner. This introduces the concept 
of DTs as prosumers. These entities provide and consume various services5. However, the challenging task is to 
implement this functionality for two reasons. First is the large number of IoT devices that produce a large search 
space, and secondly, the number of queries and the number of accesses to the devices. Both generate a large 
amount of network traffic.

The motivation of our research
The rapid proliferation of Internet of Things (IoT) and Digital Twin (DT) technologies has significantly increased 
the number of interconnected devices and systems. This growth, while promising, introduces new challenges in 
efficiently discovering and selecting the appropriate devices or services within these large networks. The SD 
process is a critical component of IoT and DT systems, as it enables the network to find and connect to relevant 
devices or DT that provide specific services. Given the nature of these networks, with devices continuously 
joining and leaving the network, traditional discovery mechanisms struggle to maintain efficiency and scalability.

In this context, Social IoT (SIoT) presents a promising solution by leveraging the social relationships between 
devices. By considering the social network of devices (i.e., how devices are connected and interact with one 
another), SIoT can facilitate more intelligent and context-aware service discovery. The motivation for this study 
is to propose a novel SD mechanism that utilizes SIoT principles, ensuring more efficient, reliable, and context-
aware SD in large, dynamic IoT and DT networks. This mechanism aims to address the inherent challenges of 
traditional discovery techniques by incorporating social interactions and relationships into the decision-making 
process. Searching for services, device discovery is a key challenge in IoT and DT. It enables the network to look 
efficiently for an appropriate DT that provides the desired service. Thus, the primary motivation for this study is 
to propose an SD mechanism using SIoT.

Problem statement
The key challenge in IoT and DT systems is the efficient and scalable discovery of devices and services. As 
networks grow in size and complexity, traditional methods of SD, which often rely on centralized or exhaustive 
search algorithms, fail to scale effectively. These methods are often computationally expensive, slow, and not 
well-suited for dynamic environments where devices frequently join, leave, or change states. Furthermore, these 
approaches cannot leverage the inherent relationships and context between devices, which could significantly 
enhance the discovery process. In this study, we propose an SD mechanism within the context of Social IoT 
(SIoT) that can efficiently match services to devices, leveraging the social relationships between devices to 
optimize the discovery process. The underlying assumption in SIoT is that an object is more likely to discover 
relevant services through its social links. By navigating a social graph of trusted peers, SloT improves scalability 
and finally improves the reliability of a network. However, to the best of our knowledge, the most recent literature 
still lacks parameters (which are suitable for the formation of friends and efficient navigation in a network). 
Thus, this research builds on this foundation by analyzing key parameters involved in SD with SloT.

Briefly, our research addresses the shortcomings of recent state-of-the-art service discovery models, which 
often fail to specify the essential parameters for efficient network navigability by proposing a novel service 
discovery and provisioning mechanism to improve network navigability. Unlike prior state-of-the-art models, 
which rely on local or global navigability16 and also lack efficient network navigability, and thus the selection 
of the next hop is a difficult task17,18. Our proposed framework combines both (Local and global) parameters’ 
selection. Our propose framework is efficient in terms of service discovery and computation overhead. It is 
scalible and can be used in the development of smart cities.

Research contribution
Although state-of-the-art models presented in19,20 yield acceptable results, However, they still lack crucial 
parameter selection and thus affect the service discovery in devices. In addition, most of the state-of-the-
art methods focus on device relationships and similarity metrics, without exploring the parameter selection 
landscape. Furthermore, many studies, such as21, emphasize only on query, often neglecting the core SD 
algorithm. In contrast, our proposed framework identifies and evaluates the most influential parameters and 
thus affects the SD in SIoT and improves the overall network navigability.

Based on these insights, we design an efficient SD framework by incorporating local and global network 
navigability to enhance the service provisioning. This framework enables next-hop object discovery efficiently. 
In addition, identify the optimal paths to the requested services. Due to its distributed nature, our proposed 
model allows rapid and scalable service access, demonstrating higher network navigability. The results achieved 
based on hop discovery and service discovery demonstrate the superiority of our proposed approach over state-
of-the-art models, confirming their applicability in real-world environments.
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The remainder of this paper is structured as follows:  State-of-the-art section reviews the most recent related 
work in this area.  we have presented a reference scenario in proposed solution section..  In this section, we 
have explained our proposed framework.  we have performed severalexperiments to check the efficiency of the 
proposed framework. This section presentsa deatiled analysis. Finally,  the conclsuion section concludes our 
paper and outlines the potential directions for future research.

State of the Art in service discovery (SD)
SD remains a critical challenge in IoT networks22. The SIoT paradigm aims to integrate IoT devices seamlessly 
while alleviating the complexity associated with network navigation. However, the increasing number of 
interconnected devices and the dynamic exchange of services present significant difficulties, particularly in 
heterogeneous environments involving diverse users and devices.

In conventional social networks, certain entities facilitate rapidly identifying requested services. 
Similarly, in the SloT context, particular objects assist users in efficiently locating desired services. Despite 
its importance, limited research has addressed this specific challenge. For example, Nitti et al.3 explored the 
SD in IoT environments, proposing a model that each object can autonomously establish social relationships 
with others based on owner-defined rules. Authors introduced a decentralized algorithm designed for object 
discovery, enabling the identification of nodes capable of providing specific application services with a social IoT 
framework. The proposed algorithm selects the next-hop object based on two primary criteria: degree centrality 
and object similarity.

Degree centrality refers to the number of direct links connected to a node at the same time. Object similarity is 
an external attribute of the SIoT. It measures how closely an object aligns with the query’s requirements21. In this 
direction, Amin et al. in23 proposed an algorithm to enhance network navigability in SIoT using local network 
metrics. Similarly, Rehman et al. in24 addressed the problem of locating object service nodes within a network. 
They introduced a two-step, query-based search mechanism using smart social agents (SSAs) to reduce human 
intervention using small-world structures. In the first step, a service request is initiated by querying neighboring 
nodes. The algorithm’s performance was evaluated using average degree, clustering coefficient, and average path 
length metrics. However, the study did not account for time and space complexity in query processing.

Mei et al. in25 developed a query-generation model based on the Poisson distribution to compute the 
frequency of independent terms, enabling more efficient information retrieval. Ramachandran et al.26 tackled 
the problem of sensor-based query interpretation by introducing a clustering mechanism, as sensors cannot 
inherently process complex human queries. User queries, typically in natural language, are parsed and stored in 
a priority-based table. The proposed system then identifies the relevant sensor by comparing transformed query 
bits with sensor identifiers. Xia et al. in27 proposed a decentralized, semantic-aware social service discovery 
framework for SIoT, utilizing fuzzy logic to calculate the correlation degree for device ranking to enhance 
discovery performance. This method enables fast, scalable service discovery by selecting a prioritized subset of 
neighboring devices. However, their work did not address privacy and security. Fu et al.27 introduced an IoT 
search engine concept, positioning it as an intermediary between IoT devices and social networks. This model, 
comprising a search engine, a user, and objects, facilitates the discovery of smart devices. Its performance was 
assessed through metrics such as degree distribution and network density. Marche et al. in28 proposed a query 
generation model using real-world IoT datasets. It is used to stimulate how objects generate queries in response 
to application requests. Each application deployed on IoT devices seeks relevant information or services by 
querying potential service providers. Efficient objects or information discovery(ID) in such environments relies 
on two key factors: (1) the structure of a social network and (2) the type of information or service request, which 
typically governs interactions in the SloT29. Building on these considerations, the authors designed a query 
generation model (QGN) and analyzed object behavior in generating service and information requests through 
peers. They had constructed a dataset derived from real IoT devices. These devices, which include static and 
mobile units, are predominantly public. The proposed model enables the generation of application queries from 
any object in the network. The authors evaluated the model using network navigability metrics, analyzing degree 
distributions across various relationship types, including object–object relationships (OOR), colocation–object 
relationships (C-LOR), and parental-object relationships (POR)30. However, this model has two major 
limitations: It relies solely on global network navigability and does not incorporate a dedicated service search 
mechanism. Moreover, temporal and spatial factors affecting query processing are not addressed. Hamrouni et 
al. in31 introduced a novel approach to service discovery in large-scale SIoT networks by leveraging Graph 
Neural Networks (GNNs). Their method utilizes the social relationships between IoT devices to reduce the 
search space during service lookups, enhancing efficiency in dynamic and heterogeneous environments. The 
authors proposed a resource allocation model that integrates both the structural and attribute information of the 
SIoT graph, facilitating clustering and subsequent service identification. Through simulations on a real-world 
dataset, their approach demonstrated significant improvements in scalability and performance over traditional 
service discovery methods. M. S. D et al. in32, proposes a model that incorporates semantic rules to enhance 
service discovery in SIoT, particularly in the context of health applications. The study evaluates various machine 
learning classifiers, including Decision Tree, Naive Bayes, K-nearest Neighbors, and Artificial Neural Networks 
(ANN), using different dataset ratios (60:40, 70:30, 80:20, and 90:10). The simulation results demonstrate that 
the ANN classifier outperforms the other algorithms, achieving an accuracy of 100%, compared to 99% for Naive 
Bayes, and 100% for Decision Tree and K-nearest Neighbors. This work highlights the effectiveness of machine 
learning models in improving service discovery in SIoT, offering valuable insights into the potential of semantic 
rules and machine learning in optimizing IoT services. Khanfor et al. in33 presented an automated service 
discovery framework for SloT, targeting mobile crowdsourcing task requests. Using two community detection 
algorithms, they propose a model that identifies a small subset of devices from a large-scale IoT network34. A 
natural language processing (NLP) module extracts the key service-related information, including type and 
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location, to process textual crowdsourcing requests. This automation significantly reduces service discovery time 
while improving task assignment efficiency. SD et al. in35 have proposed the development of a SIoT simulator. 
This simulator combines basic network simulator functionalities with advanced AI-based traffic analytics and 
visualization capabilities. It serves as middleware, facilitating communication between hardware and software 
interfaces. The middleware provides a configuration environment for various tasks, including object selection, 
navigation, service provisioning, object profiling, service and application recommendations, and user behavior 
predictions. Simulation experiments demonstrate the ease of use and scope of this simulation framework, 
emphasizing its potential for future SIoT research and development. Aljubairy in36 proposes a comprehensive 
framework for SIoT service discovery, which includes three phases: (i) collecting information about IoT objects, 
(ii) constructing a social structure among these objects, and (iii) developing an end-to-end service discovery 
model utilizing the language representation model BERT. The proposed framework leverages state-of-the-art 
deep learning techniques to establish a social network among IoT objects, facilitating more efficient and 
intelligent service discovery. Extensive experiments conducted on real-world SIoT datasets demonstrate the 
feasibility and effectiveness of this approach, showcasing the potential of deep learning for optimizing service 
discovery in SIoT environments. Gulzar et al. in37 presented a survey on IoT, SIoT, artificial intelligence (AI), and 
personalized internet of things (PIoT). The widespread adoption of the Internet of Things (IoT) has led to the 
emergence of Personal IoT (PIoT), a domain that focuses on devices, sensors, storage, and computing for 
personal use and surrounding environments. PIoT offers users high levels of personalization, automation, and 
convenience, with its increasing integration into everyday life. This proliferation has extended into a broader 
societal context, resulting in the Social Internet of Things (SIoT), where PIoT devices are interconnected to form 
social relationships. The convergence of PIoT and SIoT has highlighted the need for autonomous learning and 
comprehension of both the physical and social environments. Current research in PIoT focuses on enabling 
seamless communication among devices and striking a balance between sensing, observing, and perceiving the 
extended environment, thereby facilitating information exchange. Additionally, the virtualization of independent 
learning in the social environment has given rise to Artificial Social Intelligence (ASI) within PIoT systems. 
Despite the advancements, autonomous data communication between nodes in a social setup presents significant 
challenges in resource management. This paper offers a comprehensive review of the evolving domains of PIoT, 
SIoT, and ASI, presenting modeling insights and a case study exploring the role of PIoT in post-COVID 
scenarios. The study provides a deeper understanding of PIoT’s complexities and lays the groundwork for future 
developments in this transformative field. Karras et al. in38 try to address the challenges in Edge AI. According 
to the authors, these two paradigms have emerged as an innovative solution, integrating artificial intelligence 
directly at the data sources, such as sensors and cameras, ensuring real-time analytics and decision-making. This 
approach enables more responsive and tailored actions, reducing latency and optimizing resources.

The literature highlights the unique characteristics and applications of Edge AI in the context of IoT. Notably, 
the interaction between Edge AI and large-scale IoT domains is explored, emphasizing the combined potential 
of these technologies. A comparative study within big data infrastructures contrasts the performance of Edge 
AI and cloud-based AI, examining critical factors such as processing speeds, optimization techniques, and key 
metrics. Despite its advantages, Edge AI has inherent limitations, including resource constraints and scalability 
challenges, which are also discussed in the literature. Overall, Edge AI offers substantial improvements in 
operational efficiency, data privacy, and bandwidth utilization, making it a promising solution for the growing 
IoT ecosystem. As IoT continues to expand, the strategic deployment of Edge AI is expected to play a crucial 
role in enabling smart, real-time data utilization. Dong et al. in39 presented collaborative edge computing for 
SIoT. According to the authors, the paradigm of the IoT has garnered significant attention across both academia 
and industry over the past decades. Recently, the integration of IoT with social networks, known as the Social 
Internet of Things (SIoT), has been proposed to foster further development and enhance IoT capabilities. This 
article explores the applications, solutions, and challenges associated with SIoT, particularly in the context 
of collaborative edge computing. Collaborative edge computing leverages the strengths of both mobile edge 
computing and the social relationships among SIoT users to improve the overall efficiency and performance of 
IoT systems. The article first highlights key applications within SIoT, including collaborative offloading, caching, 
and streaming data processing. It then discusses several representative social-aware solutions such as auction 
mechanisms, coalition game theory, and federated learning, which are integral to optimizing SIoT operations. 
Furthermore, the authors identify several research challenges that remain to be addressed in the development of 
secure, robust, and intelligent SIoT frameworks. The main contributions of this work include: (1) a specification 
of the role of social ties in traditional IoT applications and their influence on individual device selection, (2) 
an explanation of why the three presented approaches—auction, coalition game, and federated learning—are 
suitable for SIoT, and (3) a discussion of the challenges that could guide future research in SIoT systems, aiming 
for more secure and efficient frameworks.

Although state-of-the-art approaches yield satisfactory results, none offer a comprehensive analysis of the 
parameters and discovery involved in SIoT. Most focus solely on the importance of relationships and node/
service similarity, while neglecting the underlying discovery algorithms. To address this gap, we propose a service 
discovery framework that leverages key parameters, details of which are presented in the following sections.

Proposed solution
This section presents our proposed framework for SIoT systems, supported by an example scenario. The complete 
service discovery (SD) process is structured into three parts: (1) an overview of social service discovery (SDTS) 
and network modeling, (2) the SD process, and (3) the framework for service provisioning.
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Reference scenario
The proposed service discovery framework enables the entities to identify services and discover the networks of 
“friends” through social relationships. This approach follows a layered model consisting of four distinct layers:

Perception layer  This bottom layer includes real-world physical objects such as temperature sensors and other 
environmental data sources. Its primary role is to sense physical conditions and transmit data to the higher 
layers.

Virtualization layer  This layer contains social virtual objects (SVOs), digital representations of physical entities 
enhanced with social capabilities. These objects describe the entities’ characteristics and the services they can 
offer.

Aggregation layer  The aggregation layer is composed of micro engines (MEs), which are central processing enti-
ties. Each ME can comprise one or more social virtual objects (SVOs) or other MEs, forming a composite struc-
ture. This layer collects and processes data from the virtualization layer and transmits it to the application layer.

Application layer  This layer is partially deployed on devices and primarily hosted in the cloud. It supports the 
deployment and execution of an application using one or more MEs. Various SDTS may reside at this level to 
provide or host services.

The SD process is initiated when a user submits a query (as illustrated in Fig. 1). This query is processed by 
the SDT component of the device, which activates the discovery mechanism. For each service the application 
requires, the system must identify the best available service node or “hop.” Selecting a suitable peer or friend 
to fulfill the service request involves several mechanisms, which constitute the core contribution of this paper. 
Notably, following hop selection uses only local information, without requiring global network knowledge. The 
details of the SD and provisioning framework are elaborated on in the following section.

Social service discovery (SDTs) and network modeling
This section presents the modeling of the proposed framework. In the SloT, SDTs are represented as N  as 
nodes, denoted by the set N = {n1, . . . , ni, . . . nI} Where I  is the total number of SDTs and ni Denotes a 
generic SDT. The social network among these SDTs is modeled using an undirected graph G = {N , ϵ} where 
ϵ ∪ {N∗N} denotes the set of edges, and each edge represents a social relationship between a pair of SDTs. 
The set of friends associated with a generic SDT is defined as F i = {ni ∈ N : ni, nj ∈ ∂ }, indicating all 
nodes directly connected to ni. Each SDT is capable of installing and executing applications. Thus, effectively 
allowing it to provide specific services.

As prosumers, SDTs can both offer and request services within the network. Figure 2 illustrates an example 
in which SDT. ni is requesting a specific service Sh. The proposed service discovery mechanism returns a 
potential provider. nj  Capable of fulfilling this request. Multiple SDTs may simultaneously request the same 
service or experience varying and evolving service requirements. As shown in Fig. 2, the graph consists of nodes 
N = {n1, . . . . . . . . . n9}. Each SDT can offer one or more services. In the diagram, SDT n1 It is marked 
in red, indicating that it is currently seeking service. S7 (Highlighted within a white cloud). The candidate 
providers for this service are SDTs n5 and n6,. In this scenario, SDTs n4 He is a friend of n1 With the 
highest degree. It is initially selected to forward the service query. Although, n5 and n6 share the same degree, 
the mechanism intelligently routes the request through the social network to optimize service discovery. Our 
proposed service discovery and provisioning mechanism is designed to enable SDTs to identify suitable service 

Fig. 1.  Reference SIoT Architecture.
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providers efficiently by leveraging social relationships and customized routing metrics. The proposed framework 
and the algorithm are given below.

Service discovery and provisioning framework
Figure 3 illustrates the proposed service discovery and provisioning framework. Upon receiving a new query at an 
object N1, an application A = {a1, a2, . . . an} is assigned to process the request. This query is decomposed 
into a set of services {s1, s2, . . . sn}, which are fulfilled by various objects within the network. The dataset 
is derived from SIoT queries, which are modeled as a graph structure. The following hop selection process 
is divided into discovery and global analysis. During the global analysis, each node evaluates its neighbors 
(friends) to determine the optimal next hop. The graph structure represents a generic SIoT graph G, where I = 9, 
and each object is defined as a tuple: ℶ = {ni, mxyz}. This graph-based component communicates with the 
shortest path analysis unit, which begins by generating a dataset from SIoT queries and identifying the shortest 
paths within the graph, as shown in Fig. 3.

A specific node is then selected to initiate the discovery process, which is triggered whenever an SDT requires 
a particular service. The node assesses various local discovery metrics for all neighboring nodes, such as degree 
centrality, relationship strength, and other relevant factors. Based on these parameters, the node selects the next 
hop with the highest probability of resolving the query. The selection of the next hop is based on a set of defined 
parameters given below.

Degree centrality DiThis metric reflects the number of connections associated with an SDT. As a critical 
parameter in social networks, the degree of centrality conveys the level of connectivity. More centralities indicate 
a greater likelihood of successfully resolving queries and locating services. This parameter is utilized in our 
model to select both the requester and neighboring nodes. It is one of the key factors considered in determining 
the next hop. The degree centrality is selected based on the equation below.

	
Cj = |F j |

maxoi ∈ O |F i|
(1)

Where |F j |is the cardinality of F . We keep this measure within the range [0,1]. We normalize it for the 
maximum number of friends of an object3.

Relationship Factor DiThis internal parameter captures a distinctive feature of SIoT, representing the 
strength of the relationship between two nodes ni and nj . It supports efficient network navigability, particularly 
in scenarios involving distant services; PoR. Additionally, it assists in service discovery for objects like CLOR or 
CWOR.

Fig. 2.  SDT Friend Selection Scenario.
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	Di (ni, nj) = f (Rij, Cij, Tij, Sij) (2)

Where Di (ni, nj) is the relationfactor from node ni to nj

	 Rij is the relationship intensity between ni, nj

	 Cij Is the contextual similarity among nodes

	 Tij icapture the temporal recency of interactions.

	 Sij it is the service similarity

Input:     Send a Search request Q
Output:  Select SDT

Start ()
  Step 1) {For each service request  in }
                {For each neighboring SDT  in }
    Calculate , , ,  and 

 Step 2) For each in , compute Score ( ):
= 1. + 2. ( , ) + 3. + 4. + 5. + 6. 

Step 3) Select = ( ). (node with highest score)

 Step 4) If  cannot fulfill the service, forward the query to the next hop

Step 5) Return  that successfully fulfills the service
End ()

Algorithm. ServiceDiscoveryProcess

 

Fig. 3.  Service discovery and provisioning framework.
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.
Spatial requirement Lj : This parameter enables requester SDTs to route queries toward the desired 

physical location within the network. For each friend node njIt is calculated as the Euclidean distance between 
the node’s position and the target location specified in the query. It is a binary parameter: assigned a value of 1 
for friend nodes that contribute data and 0 for SDTs that do not.

	
Lj =

{ 1, if nj contribute data
0, otherwise (3)

Time requirement Tj  The time requirement specified in the query is represented by this parameter. Nodes that 
frequently generate information have a higher probability of offering the requested service. T j  Thus, it reflects 
the time-frequency with which a given SDT generates data relevant to the query.

	
T j =

f j

fmax

(4)

Were the

	 fj is the freuancy of data generation by node nj relevant to the query.

	 fmax is the maximum frequancy among all nodes

.
Tj ∈ [0, 1] where values closer to 1 indicate higher temporal.

Service Similarity Sij  This matrix quantifies the similarity between the service requested in the query and the 
service of a neighboring node nj Can provide. It facilitates faster identification of suitable services, as nodes 
offering highly similar services are more likely to fulfill the request. Specifically, Sij  denotes the similarity be-
tween the service needed and the service offered by the node nj. In this work, Sj  It is assigned a value of 1 if 
the target node provides the desired service; otherwise, it is 0.

	
Sij =

{ 1, if nj provides requested servise
0, otherwise (5)

Application Similarity Aij  The metric evaluated whether a neighboring SDT can run an application similar 
to the one associated with the querying node. Application similarity can be enhanced through caching mecha-
nisms, enabling quicker response times. Aij  represents the similarity between applications supported by nodes 
ni and nj. If the target node supports the application, Aij  It is set to 1; otherwise, it is 0.

	
Aij =

{ 1, if node nj Support the application associated with node ni
0, otherwise (6)

Where:
I  show the corresponding node to the querying node
J  corresponds to the neighbor node.
The overall service discovery process is shown in Algorithm 1. It is used to decide the next hop. The 

explanation of Algorithm 1 is given as follows. Our algorithm takes a user query Q, which consists of a set of 
service requirements {s1, s2, ..., sn}, along with the SDT  Network N . It includes all nodes ( SDT s) in the 
system. It also uses the friend network F , where each SDT n1​ has a list of neighboring SDTs Fi​, and the Social 
Graph G = (N, ∈ ) Represent social relationships between SDTs. For each service request Si, the proposed 
algorithm evaluates each neighboring SDT  nJ  in Fi. The calculation is performed based on metrics including 
Di, Lj , Tj , Sij and Aij . In step 2, for each neighboring node nj  score is computed by combining the above 

metrics using predefined weights α 1, α 2, α 3 . . . α n.This score shows suitability of nj in the fulfillment of a 
service request Score (nj) = α 1.Cj + α 2.Di (nj, nj) + α 3.Lj + α 4.Tj + α 5.Sij + α 6. Aij .In step 3, The 
algorithm selects the neighboring node nj with the highest score, meaning it is the most suitable node to fulfill the 
service request. This selection is done by finding the node that maximizes the score. nj = argmaxScore (nj). 
In step 4 if the selected object nj is not a service provider. The request query is forward to the neighbor. In step 
5, If the selected object nj hold a resource, it is considered as a service provider. Finally, a link is established 
between the service seeker and service provider.

Simulation, experiments, results, and discussion
In this section, we explain the details of experimentation of our proposed model and the state-of-the-art models. 
We have conducted our simulations using NetworkX. It is a widely used platform-independent Python library 
designed to create, manipulate, and analyze complex networks17.

Datasets
We have used a real-world social IoT dataset. This dataset is publicly accessible to the research community. 
Figure  4 shows the key features of the dataset. This dataset comprises a wide range of IoT objects, such as 
smartwatches, smartphones, personal computers, and weather sensors, all located in Santander, Spain28. Table 1 
highlights the primary features of the dataset. Each IoT device is represented by several attributes, including:
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•	 id_user: Identifies the user who owns the device.
•	 device_id: A unique identifier for the device.
•	 device_type: Specifies the type of device (e.g., smartphone, sensor).
•	 device_model: Indicates the model of the device. This real-world dataset simulates service discovery and 

application similarity in a realistic IoT environment.
•	 device_brand: field specifies the brand name of each device.

This entire dataset contains 16,216 IoT objects. It is noted that 1,616 are public and 14,600 are private. It 
includes two categories of devices: mobile and static. Mobile devices are associated with dynamic attributes 
such as timestamps, longitude, and latitude. In contrast, static devices maintain fixed geographical coordinates. 
The types of devices included are listed in Table 1. The dataset features an adjacency matrix representing SIoT 
relationships, along with several predefined parameters.

Hop discovery
This subsection evaluates the performance of our proposed framework based on the number of hops traversed in 
the social graph during query forwarding. The first results shown in Fig. 5 illustrate the impact on hop discovery. 
This graph shows a comparison of two different services, called an occasional service and a frequent service. 
The uncommon queries are that it is hard to find a network, and the frequently provided services are owned 
by several SDTs in a network. The comparison distinguishes between two service types: occasional services, 
commonly available across multiple SDTs in the network. We compare our proposed model against those 
proposed by Roopa et al.18 and C. Marche et al.20. Figure 5 shows the result based on the type of service, either 
frequent service or occasional service. It is shown in Fig. 5 locating occasional services require more hops as 
compared to frequent ones. We have three different colors for this cart. We have used brown color for our 
proposal, yellow for C. Marche et al.20 et al. and the blue color for Roopa et al.18. A reader can examine that 
for occasional service, our proposed framework requires a smaller number of hops. We have verified the same 
behavior using frequent service. Herein, we can see that our proposed framework needs a smaller number of 
hops as compared to the state-of-the-art models. To verify this behavior, we performed another experiment 
based on ‘Requirements in “queries”. Figure 6 presents a graph, the first is “run queries without requirements”, 
and the second one is with “space and time requirements”. Herein, we have used a query scenario, averaging 
around 20 hops for these models. We can see in the first result that the proposed framework performs better 
than others, but not so much. We perform another experiment. On the right-hand side in Figure. 6, we can see 
the space and time requirements result. When a query complexity increases, particularly with added spatial and 

Data model Description

Point of interest Specific point location that a user may find useful or interesting

Environment and weather Object responsible of the environmental and weather monitoring

Transportation Buses, taxis and vehicles

Indicator Digital signage to display the information

Garbage truck Collection and transport of waste products

Streetlight Streetlight to see the roads in the city

Parking Location designed for parking

Alarms Traffic monitoring or security supervisor 

Table 1.   Device type

 

Fig. 4.  The real social IoT dataset.
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temporal constraints. Marche et al.20 and Roopa et al.18 do not perform well. However, our proposed framework 
performs well.

Service discovery using caching
This experiment evaluates how efficiently a node can resolve a query and locate the desired service using caching 
and without caching. The efficiency is measured with and without a caching mechanism. The x-axis shows 
the query, and the y-axis shows the number of hops in Fig. 7. These results indicate that integrating a caching 
mechanism significantly improves service discovery in SIoT. Specifically, the caching-supported framework 
reduces the average hop count. In this experiment, we can see that it is approximately 6 as compared to 20 hops 
(non-caching scenario). These results show the importance of caching as a critical strategy for hop routing in 
SIoT.

Service processing time and computation overhead
In this experiment, we examine the service processing time and the computation overhead of our proposed 
framework and the state-of-the-art models, for instance40, . Figure 8 shows the query processing time and 
computation overhead. The X-axis shown in this figure represents the dataset size. The Y-axis corresponds to the 

Fig. 6.  Requirements in queries.

 

Fig. 5.  Type of service.
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processing time and is measured in milliseconds. In this figure, the red color indicates the proposed framework, 
and the green color indicates state of the art model40. We can see that as the dataset size increases, the same 
time processing time decreases. Initially, the processing time increases gradually but accelerates significantly 
as the data size grows. For larger datasets, the processing time is reduced considerably. Thus, it indicates the 
efficiency of the proposed framework as shown in red color. Additionally, the overall throughput is also analyzed 
in relation to the data size. It exhibits a direct correlation with the dataset size, which is consistent with the 
inherent characteristics of the proposed framework. The simulation result demonstrates that the proposed 
model performs well as compared to the state-of-the-art models.

We have performed another experiment. In this experiment, we want to see the impact on service execution 
time and check the scalability of the proposed models as compared to the state-of-the-art models presented in40. 
In Fig. 9, we compare our proposed framework with the most recent model40. The x-axis shows the number of 
objects, and the y-axis shows the execution time measured in seconds. These results indicate how the number of 
objects grows based on elapsed time. We have used red color for our proposed framework and green color for 
the state-of-the-art model. We have tested both models for different iterations and concluded that the efficiency 
of our proposed framework increases in the intervals or passage of time intervals. In this graph, we see that the 
execution time of our proposed framework is shorter than the most recent state-of-the-art model40. This result 
proves that the proposed framework is more efficient because it requires less time to discover neighbor objects 
as compared to the state-of-the-art models40. It means that the proposed model is highly scalable as compared 
to state-of-the-art models.

Conclusion and future work
This study addresses the issue of object/ service discovery in the SIoT. In SIoT entities, known as SDTS, can 
establish social relationships and create a social network of friends. When an SDT receives a query, it first checks 
whether any of its friends can fulfill the request. If not, it selects the most suitable peer to forward the query. 
We have proposed a framework based on parameters for the next hop selection, prioritizing based on their 
importance. We performed extensive experiments, and the efficiency is measured in terms of query processing 
time and computation overhead, scalability, type of service, and caching. The efficient experimental results 
demonstrate that our propose framework outperforms as compared to state of the art models and thus enables 
faster and more autonomous service discovery. In this study, we did not consider the trust between the objects 
for next-hop selection. In addition, we rely on the SIoT standard dataset. In the future, we plan to incorporate the 
trust between objects and and verifying using very large datasets. We also consider the dynamic envoiroment.

Fig. 7.  Number of hops with and without caching.
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