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Object detection in remote sensing imagery presents challenges due to low resolution, complex 
backgrounds, occlusions, and scale variations, which are critical in disaster response, environmental 
monitoring, and surveillance. This study proposes a robust object detection framework integrating 
super-resolution techniques with advanced feature extraction algorithms for remote sensing images. 
The hybrid model combines Advanced StyleGAN and Swin Transformer. Advanced StyleGAN enhances 
image resolution, facilitating the detection of small and occluded objects, while Swin Transformer 
employs hierarchical attention mechanisms for effective feature extraction. Preprocessing techniques, 
including data augmentation, are incorporated to improve the diversity and accuracy of the training 
dataset. Evaluation on datasets such as VEDAI-VISIBLE and VEDAI-IR demonstrated exceptional 
performance, achieving an mAP@0.5 of 97.2%, mAP@0.5:0.95 of 72.8%, and F1-Score of 0.93, with 
an inference time of 42 ms. The framework maintained robustness under challenging conditions, such 
as low light and fog, outperforming YOLOv9-S, YOLOv9-E, and DCNN-based methods. Furthermore, it 
surpassed state-of-the-art models on RSOD and NWPU VHR-10 datasets, achieving superior detection 
accuracy and robustness. This framework offers a significant advancement in remote sensing object 
detection, providing an effective solution for complex scenarios. Future work may focus on optimizing 
computational efficiency and expanding the framework to multimodal or dynamic object detection 
tasks.
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With the recent rapid expansion of remote sensing enterprises, quick and efficient access to road information 
from remote sensingimages is becoming possible. With that, remote sensing has become a significant area of 
research and has been applied in a wide range of areas, such as environmental conservation, urban development, 
disaster response, and military intelligence in the past decade1. Technological advancements have allowed the 
acquisition of more detailed images from aerial and satellite sources that can be used to analyze better and interpret 
vast quantities of data from the Earth’s surface. Although such advancements have been made, the identification 
of small objects present within low-resolution remotely sensed images remains a persistent challenge2. Small 
objects are challenging to detect and classify due to factors such as sensor limitations, cluttered backgrounds, 
and varying environmental conditions3. Super-resolution techniques have been the topic of research to 
improve low-resolution images for object detection purposes by reconstructing high-resolution images. Earlier 
super-resolution methods utilized interpolation techniques, which resulted in blurred and lackluster images. 
Unfortunately, however, until very recently, deep learning had not progressed far enough within remote sensing 
imagery to overcome the noise in the imagery and bring about meaningful results, generating images that had 
not yet been super-resolved and did not reveal much more detail in objects of interest in the imagery4.

Despite this, the problem of detecting small objects in low-resolution images remains highly desired. Although 
many studies have been done on this problem, GAN-based super-resolution models, including ESRGAN, still 
face difficulties preserving fine details and reaching the best object detection results in complex remote sensing 
environments5. These performance gaps indicate a need for more investigation of more sophisticated GAN 
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structures, like StyleGAN, that have shown outstanding performance in generating photorealistic images with 
high realism and fine details in other domains.

For a long time, researchers have been interested in identifying small objects in low-resolution images. Yet, 
to address this problem, imaging techniques have been developed, and deep learning-based methods such 
as ESRGAN have been developed. Still, they do not render object detection accurate enough, especially in 
complex cases. In addition, CNN-based architectures, employed for object tracking, are constrained by their 
fixed receptive fields and local operations that prevent using CNNs for computing long-range dependencies 
and the global context to find small, occluded, or scale variant objects in remote sensing systems. This paper 
proposes using Advanced StyleGAN for super-resolution remote sensing images to overcome these challenges. 
It is proposed to use the Advanced StyleGAN model to improve image resolution to enable the detection of 
small objects which would otherwise be difficult to identify6,7. Furthermore, this paper attempts to deal with the 
shortcomings of super-resolution and object detection in remote sensing by integrating Advanced StyleGAN 
with Swin Transformer to enhance object detection in low-resolution remote sensing images. Both technologies’ 
strengths are combined in the proposed approach to address the problems in remote sensing while also opening 
a new door for more efficient analysis of satellite and aerial images.

The research presents a new framework combining Advanced StyleGAN with Swin Transformer to achieve 
super-resolution and object detection. The proposed method substantially improves the detection of small 
targets in low-resolution remote sensing images. The procedure boosts image features and detail definition to 
provide better performance than existing systems. Moreover, the benchmark dataset analysis confirms that the 
integrated framework is efficient and effective and establishes itself as a new benchmark for remote sensing 
object detection.

The primary contributions of this study are as follows:

• Novel Integration: Introducing a unified framework that combines Advanced StyleGAN for super-resolution 
with the Swin Transformer for object detection, bridging the gap between GAN-based and transformer-based 
models in remote sensing.

• Improved Object Recognition: This effectively addresses the challenges of detecting small, occluded, and 
scale-invariant objects in low-resolution images, surpassing existing methods in accuracy and computational 
efficiency.

• Robust Generalization: Validating the proposed approach on varied remote sensing datasets, VEDAI VISI-
BLE, VEDAI IR, and DOTA, demonstrating its adaptability to complex scenes and environmental conditions.

• Hierarchical Attention Mechanisms: Incorporating advanced attention mechanisms in the Swin Transformer 
to enhance detection performance regardless of object size or scene complexity.

Hardware constraints and resource limitations are crucial in system design in many real-world remote sensing 
scenarios. Although our primary goal is to improve detection accuracy for small or occluded objects, this 
approach remains mindful of the trade-off between computational overhead and performance. Acknowledging 
these limitations early on, it aims to develop a strategy that can eventually be adapted to edge devices, mobile 
platforms, or other resource-constrained environments where memory usage, inference speed, and power 
consumption are critical.

The rest of this paper is structured as follows: Sect. 2 reviews existing super-resolution techniques, GAN-
based image enhancement, and object detection models. Section 3 details the proposed methodology, datasets, 
Advanced StyleGAN for super-resolution, Swin Transformer for object detection, and evaluation metrics. 
Section 4 presents experimental results, a comparative analysis of the proposed and existing approaches, and 
performance evaluations. Finally, Sect. 5 concludes the paper and suggests directions for future research.

Related work
This section reviews recent advancements in super-resolution methods, GANs for image enhancement, and 
object detection frameworks in remote sensing. It highlights key studies that have significantly influenced 
current approaches.

Super-Resolution techniques in remote sensing
Remote sensing greatly relies on super-resolution (SR) performance to increase the spatial resolution of the 
satellite data and contribute to a more accurate analysis. The needed application spaces for this advancement 
include environmental monitoring, urban planning, and disaster management systems. The SpectralGPT model8 
represents a significant development because it uses a 3D generative pre-trained transformer designed for 
spectral remote sensing images. This model demonstrates exceptional effectiveness in reducing errors in scene 
recognition and changing identification tasks, which has the potential to boost numerous remote sensing tasks. 
A fundamental exploration of remote sensing resolution and scale effects through enhanced pixel resolution is 
presented, which serves as a foundation for SR research9. The RingMo framework serves as a self-supervised 
learning model that generates high-resolution remote-sensing images, according to10. RingMo demonstrates 
the highest level of performance across multiple tasks through its analysis of extensive datasets, which opens 
potential improvements for self-supervised SR learning in applications. Remote sensing object detection 
receives a boost from the large selective kernel network (LSKNet)11 using an optimized spatial receptive field to 
achieve better detection results. Modern scientific developments show that remote sensing data can be improved 
through a synergistic combination of SR techniques for enhanced image analysis capabilities.
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Generative adversarial networks (GANs) for image enhancement
GANs have become essential for image enhancement, especially in remote sensing, where high-resolution 
imagery is essential for detailed analysis. Due to its excellent performance in transforming low-quality images to 
high-resolution images, GAN benefits several applications, including object detection, land cover classification, 
and environmental monitoring. The integration of GANs with better Mask R-CNN models can be applied in one 
application: improving edge detection in satellite images, where increased accuracy is required for monitoring 
disturbed areas in construction12. In change detection models, GANs have also been employed in dual-branch 
multilevel intertemporal networks (DMINet) for effectively capturing small changes between bitemporal images 
that are important for monitoring dynamic environments13. Additionally, GANs have demonstrated utility in 
enhancing facial image resolution while retaining intrinsic characteristics14. Moreover, a review article concurs 
that GAN-based models surpass the traditional deep learning counterpart that problem needs a lot of detail 
and accuracy15. In meteorology and oceanography, GANs have been used to reconstruct missing information 
on a small scale in turbulent flow fields using lower-resolution images16. Further, PROBA-V satellite imagery 
is enhanced with GAN-based super-resolution methods to increase the resolution and detail of the vegetation 
monitoring17. Additionally, GAN was employed to increase the resolution of hyperspectral images for 
environmental mapping as well as agriculture18. In addition, GAN-based models have been employed to upscale 
urban surveillance images for planning and security applications19.

Object detection models in remote sensing
Object detection is an important problem in remote sensing and can be utilized in land use mapping, urban 
planning, disaster management, and environmental monitoring. Recent advances in deep learning have 
dramatically increased the capacity to detect objects, buildings, vehicles, and natural features in satellite and 
aerial imagery. Faster R-CNN is among the most popular models because it uses a region proposal network 
to locate the regions of interest. The model has been used to detect objects such as ships, aircraft, or vehicles 
in high-resolution satellite images20. The combination of Faster R-CNN with feature pyramid networks (FPN) 
has further boosted object detection, especially for small objects (occurring in remote sensing due to variances 
in object size from scene to scene), better than what can be achieved via a single-stage detector. Real-time 
results are also being yielded through You Only Look Once (YOLO) in remote sensing object detection. The 
high accuracy and speed provided by YOLO models, such as the latest versions, YOLOv5 and YOLOv7, make 
them suitable for large-scale image analysis in remote sensing21. The single-shot Multibox detector (SSD) has 
become very popular, especially when dealing with real time applications like traffic and city surveillance22. To 
deal with class imbalance problems in object detection, RetinaNet utilizes focal loss that helps to detect small 
and densely occluded objects with higher accuracy while preserving the detection accuracy of larger objects23. 
Among the applications of the Mask R-CNN model, including building footprint extraction and disaster damage 
assessment24, its outstanding object detection and instance segmentation ability has been proved. Furthermore, 
transformer-based models like detection transformer (DETR) have gotten rid of region proposals using attention 
mechanisms and improved object detection in such complex scenes25.

Materials and methods
This section describes the proposed hybrid model integrating Advanced StyleGAN for super-resolution and the 
Swin Transformer for object detection. It also details the data preprocessing steps, model training, tuning, and 
evaluation metrics.

Proposed approach
The proposed approach utilizes Advanced StyleGAN to upscale low-resolution images to high-resolution ones, 
followed by the Swin Transformer for object detection. Advanced StyleGAN first takes low-resolution remote 
sensing images and generates their higher-resolution counterparts, preserving fine-grained details that might 
otherwise be lost. These super-resolved images then serve as input for our Swin Transformer-based detector. The 
benefit is twofold: (1 ) improved clarity for small or partially hidden objects, and (2) enhanced feature extraction 
for the Transformer. Swin Transformer achieves more precise object localization and classification based on 
how well-detailed an image is. Super-resolution techniques working together with attention-based detection 
methods enhance identification accuracy when dealing with various levels of scene disarray. An image super-
resolution system functions through three essential parts: the generator discriminator and specific loss functions 
to enhance output image authenticity.

The generator begins with low-resolution images to generate high-resolution images on its output side. The 
model produces artificial images before a classifier evaluates real high-definition images and the fake images it 
produces. A perceptual loss function enhances the quality of output images to produce super-resolved images 
that appear sharp with defined details and a textured appearance.

The image outputs produced by Advanced StyleGAN become the input of the Swin Transformer, which 
specializes in remote sensing applications. Image enhancement occurs through Advanced StyleGAN, yet the 
Swin Transformer enhances accuracy and operational efficiency when detecting small objects in challenging 
remote sensing conditions. The core function of Advanced StyleGAN involves creating high-resolution images 
from low-resolution data that keeps essential textural patterns intact. These enhanced images are then fed 
directly into the Swin Transformer detector. Because the Swin Transformer excels at extracting multi-scale 
features through hierarchical attention, having sharper, more detailed inputs significantly boosts its ability to 
localize and classify small or partly occluded objects. This tight combination of super-resolution and attention-
based detection underpins our system’s high accuracy, especially in complex remote sensing conditions. The 
entire methodology is visually summarized in Fig. 1 for clarity.
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As shown in Fig. 1, the proposed framework integrates Advanced StyleGAN and Swin Transformer to address 
the challenges in object detection in remote sensing imagery. Data from the remote sensing datasets VEDAI_
VISIBLE, VEDAI_IR, and DOTA form the input. The input data is prepared for subsequent stages through 
preprocessing steps such as rotation, cropping, flipping, and normalization. The Advanced StyleGAN generator 
processes the preprocessed data to transform it into high-resolution images using a mapping network and 
adaptive instance normalization (AdaIN) layers. To achieve this, the generator is trained with a discriminator, 
and the loss is minimized to keep the generated images having enhanced detail and texture. Then, these super-
resolved images with more information are fed into the Swin Transformer for feature extraction.

The Swin Transformer’s hierarchical attention framework enables high-resolution feature learning while it 
processes images from beginning to end to receive broad contextual understanding later in processing. Through 
this process, the model achieves better resistance to object size differences and improves its ability to handle 
obstructed and varied scale targets.

The region proposal network (RPN) produces bounding boxes from all extracted features through classification 
and regression, further applying non-maximum suppression. The combined framework of Advanced StyleGAN 
with Swin Transformer generates a solution that provides precise object detection performance on remote 
sensing imagery containing small or partially obscured complex objects.

Fig. 1. Proposed Framework.
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Datasets
Researchers applied careful preprocessing techniques to their datasets to contain image variations alongside 
structural differences between the image sets. This study utilized the VEDAI-VISIBLE database26, and VEDAI-
IR database27. Remote sensing image detection of small objects forms the primary focus of VEDAI-VISIBLE, 
but DOTA28 increases the examination complexity for better detection accuracy. The chosen datasets represent 
different usual conditions and complexities in remote sensing applications. VEDAI provides a closer look at 
small vehicles (visible and infrared), DOTA features large-scale overhead images with complex backgrounds, 
and RSOD/NWPU VHR-10 includes diverse classes, object orientations, and resolutions. Combining datasets 
with different scales and spectral bands ensures that our model learns to detect objects under many types of 
clutter, occlusion, and environmental conditions. This selection also reflects widely recognized benchmarks in 
the field, allowing us to compare our approach to other published work more directly.

The VEDAI datasets contain 1,210 images, each withdimensions of 1024 × 1024 pixels in the visible and 
infrared spectrums. Structural complexity in these datasets was defined based on the number of classes per 
image: images with fewer classes were categorized as having low complexity, whereas those with more classes 
exhibited moderate complexity.

On the other hand, the DOTA dataset is larger and more diverse, consisting of 2,806 images ranging from 
800 × 800 to 20,000 × 20,000 pixels. Structural complexity was categorized similarly, with images containing 
fewer than two classes labeled as low complexity, those with three to four classes as moderate complexity, and 
images with more than four classes classified as highly complex.

The images were divided into four sets of increasing complexity and size to prepare the datasets systematically. 
This progression ensured the gradual introduction of structural diversity and variability.

• Set 1: Derived from the VEDAI-VISIBLE dataset, this set included 10% of the dataset, comprising 121 images 
labeled manually into two classes: cars and trucks. Structural complexity was low, and no image augmentation 
was applied.

• Set 2: This set builds upon Set 1 and contains images from the VEDAI-IR dataset. Rotations of 90°, 180°, and 
270° were performed on image augmentation, resulting in 484 images for the dataset. Structural complexity 
was moderate.

• Set 3: This set consisted of images from VEDAI-VISIBLE and VEDAI-IR, combined with augmentations such 
as cropping and horizontal and vertical flipping. The dataset increased from the previous sets of 207 to 726, 
and the structural complexity increased.

• Set 4: The images from previous sets combined with the data of others from the DOTA dataset. The same 
augmentations, such as rotations and flips, were also applied to the new DOTA images. This set had 1,932 high 
complex structures, including diverse objects and conditions.

By preparing this structured dataset, the model could train on increasingly complex images beyond the variety 
it would encounter in real-world scenarios. This approach strengthened the model’s generalization and remote 
sensing detection.

Algorithm 1. Advanced StyleGAN-Swin transformer for super-resolution and object detection.
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Advanced stylegan for super-resolution
This high-performance generative model enhances the quality of remotely sensed images to detect small objects 
more easily. Building on the foundation of StyleGAN has been demonstrated to produce high-quality image 
synthesis with the ability to manipulate different levels of detail; this model extends the foundation. Specific to 
remote sensing imagery, this implementation makes modifications and uses the properties of remote sensing 
imagery to achieve the best performance for such data.

Architecture and design
The two core components of the Advanced StyleGAN are the generator G and the discriminator D.

The generator aims at mapping a low-resolution image ILR to a high-resolution image ISR . It comprises 
several convolutional layers, AdaIN layers to align the input image’s statistics, and skip connections to preserve 
image details. In mathematical terms, the generator’s output is:

 ISR = G( ILR, z) (1)

Expressly, it is conditioned on z being a latent vector sampled from a Gaussian distribution fed through style 
modulation layers at different generator stages. It also allows for controlling fine details in the output image to 
varying levels of detail, which is particularly useful for enhancing remote sensing features.

The discriminator evaluates the authenticity of the generated high-resolution images, computing a probability 
score to determine if the images are real high-resolution images IHR or not. The discriminator is trained to 
minimize the adversarial loss:

 Ladv = EILR ( [ logD (ILR)] + EILR ( [log − 1D (G (ILR, z)) )] (2)

Training process and loss functions
The training process for Advanced StyleGAN involves iterative optimization of the generator and discriminator 
using a combination of loss functions designed to balance image fidelity and realism.

• Adversarial loss ( Ladv): Ensures the generator produces images indistinguishable from real high-resolution 
images.

• Perceptual loss ( Lperceptual): Ensures that the generated images retain perceptual similarity to high-resolu-
tion images. This is computed by comparing feature maps extracted from a pre-trained VGG network:

 
Lperceptual =

∑
N
i=1

1
Ci × Hi × Wi

∥ ∅ i(ILR) − ∅ i(ISR)∥ 2 (3)

where ∅ i represents the feature maps from the ith layer of the Swin Transformer, and Ci, Hi , and Hi  denote 
the channels, height, and width, respectively.

• Content loss ( Lcontent): Preserves the structural content of the original low-resolution image:

 Lcontent =∥ ILR − ISR∥ 2 (4)

• Style loss ( Lstyle): Captures the style of the original image, including texture and color distribution, using 
the Gram matrix of feature maps:

 
Lstyle

∑
N
i=1 ∥ G (∅ i (IHR)) − G (∅ i (ISR)) ∥ 2 (5)

The overall loss function for the generator is a weighted sum of these losses:

 LG = λ advLadv + λ perceptualLperceptual + λ contentLcontent + λ styleLstyle (6)

where λ adv  , λ perceptual  , λ content  , and λ style   are weights controlling the contribution of each loss.
The training process enhances image resolution and facilitates robust object detection in remote sensing 

applications. The systematic methodology for this process is detailed in Algorithm 1, which outlines the step-by-
step approach for achieving these objectives.

Swim transformer for object detection
The Swin Transformer is utilized for object detection by leveraging its hierarchical feature extraction and 
window-based attention mechanisms. This approach allows for accurate detection of objects in super-resolved 
remote sensing images, as it captures both local and global contexts. The images are processed through the 
model, which extracts multi-scale features, enabling the detection of objects across different sizes. The final 
output provides bounding boxes and class probabilities, ensuring high accuracy and fast processing, even in 
complex RS scenarios.

Architecture of the Swin transformer
For object detection, the Swin Transformer takes the super-resolved image ISR , generated by the Advanced 
StyleGAN, as input. The image is first split into non-overlapping patches of size P × P, which are then embedded 
into a sequence of patch embeddings X0 . These embeddings serve as the input to the Swin Transformer:
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 X0 = PatchEmbed (ISR) (7)

Each stage of the Swin Transformer processes these patch embeddings through a combination of the Multilayer 
Perceptron (MLP) and Shifted Window Multi-Head Self-Attention (SW-MSA) layers. The transformation at the 
layer l can be represented as:

 Xi=1 = MLP (SW − MSA (Xl) + (Xl) + Xl (8)

where Xi represents the features at the layer l, and the attention mechanism SW-MSA is performed within the 
shifted window. This allows the model to learn dependencies across different regions of the image. The MLP 
further refines these features, enhancing the model’s ability to identify objects at varying scales.

During model training, patch merging occurs at multiple stages to reduce spatial dimensions and expand the 
receptive field, which is particularly useful for detecting objects of varying sizes:

 Xdown = P atchMerge (Xprev) (9)

where P atchMerge combines adjacent patches to create a coarser, more abstract feature representation.

Integration with Super-Resolved images
For object detection, super-resolved images are generated using the Advanced StyleGAN and fed directly into 
the Swin Transformer to extract features. The integration of super-resolution and object detection using the Swin 
Transformer can be described mathematically as follows:

The low-resolution image ILR is transformed into a super-resolved image ISR using the Advanced 
StyleGAN (Eq. 1).

The super-resolved image ISR is then passed into the Swin Transformer, where its hierarchical attention-
based architecture is employed to extract features and predict object locations and class labels:

 Youtput = HSwin (ISR) (10)

where HSwin represents the Swin Transformer model, and Youtput includes the predicted bounding boxes and 
class labels.

This approach leverages the fine detail in the super-resolved images, allowing Swin Transformer to accurately 
discover and categorize objects even in difficult remote sensing scenes where the object may be small or partially 
obscured.

Training and fine-tuning strategies
The Swin Transformer, alongside Advanced StyleGAN, utilized NVIDIA RTX 3090 GPUs with PyTorch as their 
basis to conduct their training. Training and fine-tuning represented the two principal phases of the learning 
procedure.

The Advanced StyleGAN received training on VEDAI-VISIBLE and VEDAI-IR images to create detailed 
images starting from basic input resolutions. Adam optimizer trained the process with a learning rate set at 0.0001 
while conducting pre-training procedures. The training utilized 16 items per batch, decreasing the learning 
rate by cosine anneal functions during 100 epochs. The models proceeded with training following the super-
resolution model and achieved adequate competence where high-resolution images served to train the Swin 
Transformer for object detection. The Swin Transformer fine-tuned its pre-trained weights while an additional 
reduction was applied to the learning rate to counteract overfitting. Random rotation flipping and scaling served 
as data augmentation approaches during this process. Table 1 provides the complete set of hyperparameters for 
both Advanced StyleGAN and Swin Transformer.

Hyperparameter Advanced StyleGAN Swin Transformer

Optimizer Adam AdamW

Learning Rate 0.0001 0.00005

Learning Rate Schedule Cosine Annealing (100 epochs) Decay Factor: 0.9 (every 10 epochs)

Batch Size 16 8

Training Epochs 100 150

Loss Functions Adversarial, Perceptual, Content, Style Focal Loss, GIoU Loss

Data Augmentation Rotation, Flipping Rotation, Flipping, Cropping

Input Image Size N/A 512 × 512 pixels

Pre-trained Weights N/A Pre-trained on the COCO dataset

Hardware NVIDIA RTX 3090 (24 GB VRAM) NVIDIA RTX 3090 (24 GB VRAM)

Framework PyTorch PyTorch

Table 1. Training hyperparameters for advanced stylegan and Swin transformer.
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Evaluation metrics
Several performance metrics are used to evaluate the proposed model’s performance. The first was the mean 
average precision (mAP) concerning different Intersections over union (IoU) thresholds, which was the object 
detection precision for a set of categories. The F1 score was also used to measure the model’s object detection, 
classification accuracy, and recall. The model was also evaluated regarding its feasibility in remote sensing 
applications and the evaluation of inference time and computational resource usage. All evaluation metric 
formulas are given in Table 2.

Experiments and results
An evaluation of the described Advanced StyleGAN super-resolution with Swin Transformer object detection 
method in RS images uses the steps outlined in this section. The review analyzed three performance metrics 
from the model, including its precision in detection tasks, computational speed during operation, and ability to 
handle complex RS application contexts.

Implementation details and experimental setup
The experimental design ran on PyTorch deep learning programming software and was executed on NVIDIA 
RTX 3090 GPU systems. The VEDAI-VISIBLE, VEDAI-IR, and DOTA datasets provided diverse environmental 
conditions for the training and evaluation phases. All images received 512 × 512-pixel resolution for 
standardization between datasets.

Performance of advanced stylegan
The advanced StyleGAN system demonstrated its capacity for super-resolving images through objective quality 
evaluation using structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean squared error 
(MSE). The metrics evaluate both the SR image quality and verify the authenticity of the ground truth. Table 3 
shows the performance results of objective quality metrics from the VEDAI-VISIBLE, VEDAI-IR, and DOTA 
datasets.

The Advanced StyleGAN maintained high PSNR and SSIM scores in all datasets because it showed excellence 
in resolution enhancement and detail preservation. The model demonstrates strong error precision between 
super-resolution output and reference ground truth by producing small MSE values. The capability of Advanced 
StyleGAN to create high-quality SR images has been confirmed by these research findings, making them valuable 
for object detection operations.

The second evaluation consisted of a qualitative analysis that examined how Advanced StyleGAN processed 
super-resolved images to determine its success in preserving vital details in RS images. The analysis presented 
in Fig.  2 demonstrates database-to-database comparisons and shows how the proposed approach generates 
new results. The images in section (a) display low-resolution (LR), super-resolved (SR), and ground truth (GT) 
images before applying the method.

Dataset PSNR (dB) SSIM MSE

VEDAI-VISIBLE 30.2 0.92 0.0018

VEDAI-IR 29.8 0.91 0.0020

DOTA 28.5 0.89 0.0025

Table 3. PSNR, SSIM, and MSE scores for advanced StyleGAN.

 

Metric Formula

Mean Average Precision (mAP) mAP = 1
|C|

∑
c∈ C

AP (c)

F1-Score F 1 = 2. P recision.Recall
P recision+Recall

Precision P recision = T P
T P +F P

Recall Recall = T P
T P +F N

Peak Signal-to-Noise Ratio (PSNR)
P SNR = 10.log10

(
L2

MSE

)
,

where L is the maximum possible pixel value and MSE is the mean squared error.

Structural Similarity Index (SSIM)
SSIM(x, y) =

(2µ xµ y+C1)(2σ xy+c2)
(µ 2

x+µ 2
y+C1)(σ 2

x+σ 2
y+c2)

,

where µ, σ, and C1 , C2   are statistical properties and constants.

Mean Squared Error (MSE) MSE = 1
n

∑ n

i=1
(yi − ŷi)2 ,

where yi  is the ground truth value and ŷi   is the predicted value.

Inference Time Measured directly in milliseconds (ms) using system timers during inference.

GPU Utilization Directly monitored using GPU profiling tools (e.g., NVIDIA’s GPU Profiler).

Memory Usage Measured in gigabytes (GB) using profiling tools.

Table 2. Formulas for evaluation metrics used in the proposed approach.
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As shown in Fig. 2 (b), the super-resolution method proposed in this work significantly improves the image 
realism and detail compared to the original ones shown in Fig. 2 (a). The super-resolved images demonstrate 
improved image quality for RS applications. These enhanced images are particularly useful for precise object 
detection tasks where visual clarity is vital.

This research also evaluates the impact of super-resolution on object detection performance. Advanced 
StyleGAN is designed to improve the spatial resolution and realism of RS images, improving object detection 
models, particularly for small or occluded objects.

For all datasets, Table 4 shows consistent improvements in mAP at 0.5 IoU threshold after super-resolution, 
with gains between 12.1% and 15.0%. For instance, it increased the mAP from 72.5 to 82.3% for the VEDAI-
VISIBLE dataset and had similar improvements for the VEDAI-IR and DOTA datasets. The super resolution 
process enhances the image quality, and it helps the detection model, particularly when combined with the Swin 
Transformer, to detect and classify more objects effectively. These results indicate that image quality is a key 
factor in effective remote sensing services, and super-resolution integration methods can dramatically improve 
the object detection process.

With the Swin Transformer, the detection model can better detect and classify objects in the RS images, making 
the use of super-resolution even higher. A hierarchical attention mechanism is used in the Swin Transformer to 
process super-resolved images so that the model can better localize object locations and categories. The overall 
feature enhancements in object detection performance are illustrated in this workflow (Fig. 3).

This approach integrated the super resolution with Swin Transformer, and because of the increased resolution 
and processed image quality, this achieved significant improvements in object detection. This combined approach 
is proven to be accurate, and the accuracy of the definition and classification of objects is highly dependent on 
the efficiency of this approach, which is of high value for complex scenarios where accurate identification is 
required.

Object detection accuracy with Swin transformer
MAP and F1-Score evaluation
Two metrics, mAP, and F1-Score, evaluate the Swin Transformer’s object detection performance. These metrics 
help understand the model’s precision and recall capability across different object categories. Table 5 shows the 
mAP values at two different IoU thresholds (0.5, 0.5:0.95). It shows that, in super-resolved RS images, the model 
achieves high efficiency in detecting multiple objects of various types.

The Swin Transformer has strong mAP values on all object categories. It performs well at the mAP@0.5 
threshold, meaning the method can detect and classify objects in remote sensing images well. Finally, the 
mAP@0.5:0.95 values show that the model is precise, especially at higher IoU values (higher IoU means more 
overlap between the predicted bounding box and actual ground truth). Additionally, the F1 scores for each object 
category show that the proposed model combines precision and recall to detect many object types robustly. This 

Dataset
mAP@0.5
Pre-Super-Resolution

mAP@0.5
Post-Super-Resolution

Improvement
(%)

VEDAI-VISIBLE 72.5% 82.3% + 13.5%

VEDAI-IR 70.1% 78.6% + 12.1%

DOTA 65.4% 75.2% + 15.0%

Table 4. Object detection results pre- and post-super-resolution.

 

Fig. 2. Image quality before and after applying the proposed super-resolution method.
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corroborates the fact that the Swin Transformer is a good fit for the problem of remote sensing imagery when 
combined with super-resolved inputs from Advanced StyleGAN.

For the three key datasets, VEDAI-VISIBLE, VEDAI-IR, and DOTA, the Swin Transformer has been 
experimented with in the context of object detection and scrutinized concerning its precisions and recalls. These 
metrics were used for training to check how well the model could distinguish true and false positives. Figure 4 
shows the accuracy and recall curves for each model dataset. The Swin Transformer eventually gets more precise 
and recalls all three datasets. Finally, looking at the precision curves, the curves get more accurate when reducing 
the false positives, whereas, on the recall curves, The curves also have a better ability to find the true positives 
(especially in the case of DOTA). It demonstrates the Swin Transformer’s versatility and high accuracy and can 
strike a good balance between precision and recall in different remote sensing scenarios. Overall, the metrics 
are improving continuously, which means that the model is ready and can manage the complexities of object 
detection in a complicated environment.

Confusion matrix analysis
The confusion matrix is used to evaluate the effectiveness of the object detection of the Swin transformer using 
the VEDAI and DOTA datasets. It shows true and false positives and can provide insights into what the model 
can distinguish in the images. This helps analyze the areas of the model that are performing exceptionally well 
and those that need improvement. In Fig. 5, the confusion matrices of both datasets are shown, which helps to 
understand the classification results.

On VEDAI and DOTA datasets, Swin Transformer performs very well on image classification, especially 
car and truck identification. Nevertheless, some misclassifications are found, particularly in the DOTA dataset, 
where trucks can be falsely classified as something else. However, this implies that the model can still improve 
when dealing with such objects in similar scenes. Analysis of the confusion matrix shows that further tuning is 
necessary and should be done in more detail to overcome object detection in complex RS.

Performance across object sizes
Comparing the performance of object detection models based on object size is crucial, especially in remote 
sensing, where objects can vary significantly. A key strength of the Swin Transformer is its ability to effectively 

Object category mAP@0.5 mAP@0.5:0.95 F1-Score

Cars 85.4% 62.3% 0.88

Trucks 83.2% 60.1% 0.86

Planes 89.5% 68.7% 0.91

Ships 81.7% 59.8% 0.84

Storage Tanks 80.9% 57.4% 0.83

Table 5. mAP@0.5 and mAP@0.5:0.95 for various object categories.

 

Fig. 3. Enhanced object detection through super-resolution and swin transformer.
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detect small, medium, and large objects. Table 6 displays the detection accuracy across these different object 
sizes for the VEDAI and DOTA datasets.

As shown in Table 6, detection accuracy decreases as object size decreases, with the highest accuracy recorded 
for large objects and the lowest for small objects. This trend is consistent across the VEDAI and DOTA datasets, 
indicating that detecting smaller objects in remote-sensing images is more challenging.

Dataset
Small objects
(%) Medium objects (%) Large objects (%)

VEDAI-VISIBLE 70.5 85.2 92.4

VEDAI-IR 68.1 83.7 91.5

DOTA 73.2 81.9 89.8

Table 6. Detection accuracy based on object size (small, medium, large).

 

Fig. 5. Confusion matrix for object detection on VEDAI and DOTA datasets.

 

Fig. 4. Performance metrics for swin transformer across VEDAI-VISIBLE, VEDAI-IR, and DOTA datasets.
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Comparison with State-of-the-Art methods
The performance of the Swin Transformer developed in this study should be evaluated by comparing it with 
state-of-the-art object detection models such as YOLOv5, YOLOv7, Faster R-CNN, and EfficientDet. This is a 
simple comparison with Swin Transformer using the mAP and F1-Score metrics to investigate how fairly Swin 
Transformer performs compared to other prevalent models. The mAP and F1-Score for each of the models are 
presented in Table 7.

The Swin Transformer performs best in both mAP and F1-Score, which implies better accuracy and precision 
in object detection. The results thus show that it is a practical approach for dealing with complex remote sensing 
tasks versus other state-of-the-art methods.

Computational efficiency and inference time
Object detection models’ computational complexity and inference time are crucial for evaluating their practical 
usability, particularly in environments with limited computational resources. To better understand the 
performance of the Swin Transformer, YOLOv7, and YOLOv5, we compared their inference times and resource 
consumption. Table 8 summarizes the inference time and computational resources required for each model.

YOLOv5 achieves the best inference speed and resource consumption performance, making it the most 
efficient model. However, while the Swin Transformer has a slightly longer inference time, it offers significantly 
higher accuracy, as evidenced by the accuracy vs. Inference speed graph in Fig.  6. Since generating super-
resolved images involves additional convolutional layers and training steps, GPU consumption is inevitably 
increased compared to running the Swin Transformer alone. For instance, when tested on an NVIDIA RTX 3090 
GPU, our method’s memory footprint was around 10.2 GB, higher than YOLOv5’s 7.0 GB. However, this extra 
cost is balanced by the significant gains in detection accuracy, especially for smaller objects. In practical terms, 
users should consider whether they can accommodate a higher memory budget in exchange for more precise 
results, particularly in scenarios where missing small objects could be critical (e.g., disaster relief or sensitive 
surveillance).

The Swin Transformer achieves the highest mAP@0.5 of 97.2%, although it requires 50 ms for inference. 
In contrast, YOLOv7 strikes a good balance between speed and accuracy, providing a mAP@0.5 of 94.5% with 
an inference time of just 33 ms. YOLOv5, while the fastest with an inference time of 28 ms, has a slightly lower 
accuracy at 92.8%. These findings confirm the hypothesis that there is an inherent trade-off between speed and 
accuracy. The Swin Transformer is the optimal choice when accuracy is the top priority, but YOLOv5 remains 
the best option for real-time applications where speed is critical.

Robustness to adverse conditions
Remote sensing operations need models to function effectively across different environmental settings, 
including cloud cover conditions, inadequate lighting, and fog conditions. Table 9 evaluates Swin Transformer 
and YOLOv5 and YOLOv7 detection performance under various environmental conditions.

Swin Transformer performs superior to YOLOv7 and YOLOv5 in detecting objects while facing weather 
conditions such as cloud cover and fog or low light conditions. During adverse conditions, the Swin Transformer 
detects aging in its performance while keeping accuracy stable at a moderate decrease. According to its 
performance data, low light conditions affect the Swin Transformer more than other available models. The 
selection of models for real-world deployment necessitates factors from the environment because they play an 
essential role in the process.

Evaluation of state-of-the-art models using benchmark datasets
To further evaluate the performance of the proposed method, Table 10 shows the results of the proposed method 
in different object classes in the RSOD dataset33. This dataset introduces additional challenges, including variable 

Model Inference Time (ms) GPU Utilization (%) Memory Usage (GB)

YOLOv7 30 70 8.5

YOLOv5 25 65 7.0

Swin Transformer (Proposed) 50 85 10.2

Table 8. Computational efficiency comparison of Swin transformer, YOLOv7, and YOLOv5.

 

Model
mAP@0.5
(%)

mAP@0.5:0.95
(%) F1-Score

Swin Transformer (Proposed) 95.2 72.8 0.93

YOLOv729 92.5 70.1 0.91

YOLOv530 90.8 68.3 0.89

Faster R-CNN31 88.7 66.5 0.87

EfficientDet32 89.3 67.2 0.88

Table 7. Comparison of mAP and F1-score across models.
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object scales and complex scenes, making it a valuable benchmark for evaluating model robustness. The same 
metrics were compared with other models to identify each model’s strengths and weaknesses.

Table 10 demonstrates how the proposed method surpasses many of the proposed models for Precision and 
F1-Score for most object classes in RSOD. YOLO-SE and oriented object detection models work well but have 
lower recall, indicating they have issues detecting smaller objects or objects obscured by others. However, the 
DCNN-based models perform generally well, and their variability between different object classes is much higher 
than their variability between different object classes, suggesting that they are sensitive to object appearance and 
environmental conditions.

Further evaluation of the proposed method on the NWPU VHR-10 dataset37 is provided in Table 11. The 
results were compared with state-of-the-art models, including YOLO-SE, the oriented object detection model, 
and DCNN-based models, using Precision (P), Recall (R), F1-Score, and mAP metrics. This comparison 
highlights the proposed method’s ability to handle diverse object categories and varying complexities, performing 
exceptionally well across the board. Table 11 shows that the proposed method outperforms other models in 
almost all categories, achieving the highest average Precision, Recall, and F1-Score values. It also demonstrates 
robust mAP performance, effectively detecting small and densely packed objects in high-resolution imagery. The 
oriented object detection model, specialized in detecting objects with rotational variations, performed well in 

Condition Model mAP@0.5 (%) mAP@0.5:0.95 (%) F1-Score

Clear Sky

Proposed Swin Transformer 97.2 75.3 0.94

YOLOv7 94.5 72.1 0.91

YOLOv5 92.8 70.2 0.89

Cloud Cover

Proposed Swin Transformer 93.8 70.4 0.91

YOLOv7 90.1 67.3 0.88

YOLOv5 88.7 65.0 0.86

Low Light

Proposed Swin Transformer 91.5 68.9 0.89

YOLOv7 88.3 65.7 0.86

YOLOv5 85.9 63.8 0.84

Foggy Conditions

Proposed Swin Transformer 90.7 67.8 0.88

YOLOv7 87.2 64.9 0.85

YOLOv5 84.5 62.7 0.83

Table 9. Performance under varying environmental conditions.

 

Fig. 6. Inference speed vs. accuracy trade-off.
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specific scenarios, while the YOLO-SE model maintained a solid overall performance. However, it was slightly 
less effective in environments with complex backgrounds.

The proposed framework was evaluated through a comprehensive comparison with the latest YOLOv9 
series object detection models, using key performance metrics such as detection accuracy (mAP@0.5 and 
mAP@0.5:0.95), inference time, model parameters, computational FLOPs, and adversarial resistance. The results 
in Table 12 demonstrate the proposed framework’s superiority compared to the most recent YOLOv9 models: 
YOLOv9-S and YOLOv9-E.

Metric mAP@0.5 (%) mAP@0.5:0.95 (%) Inference Time (ms) Model Parameters (M) FLOPs (G) Robustness to Adverse Conditions

YOLOv9-S38 71.9 55.6 23 7.1 18.1 No specific testing

YOLOv9-E39 72.8 70.6 23 Not Available Not Available No specific testing

Proposed 97.2 72.8 42 86.0 200.0 High (Tested under low light, fog, etc.)

Table 12. Comparison between the latest YOLOv9 variants and proposed framework.

 

Model Class D00 D01 D02 D03 D04 D05 D06 D07 D08 D09 Average

Proposed

P 0.965 0.989 0.982 0.976 0.980 0.946 0.971 0.987 0.982 0.975 0.975

R 0.953 0.990 0.987 0.981 0.985 0.958 0.976 0.992 0.984 0.980 0.977

F1 0.959 0.994 0.985 0.978 0.982 0.952 0.973 0.985 0.983 0.977 0.975

mAP 0.993 0.994 0.992 0.995 0.996 0.991 0.994 0.998 0.996 0.997 0.994

YOLO-SE34

P 0.955 0.981 0.965 0.962 0.968 0.942 0.961 0.984 0.980 0.974 0.967

R 0.948 0.976 0.960 0.955 0.964 0.934 0.958 0.981 0.978 0.971 0.962

F1 0.951 0.978 0.963 0.957 0.966 0.938 0.960 0.982 0.979 0.972 0.965

mAP 0.984 0.989 0.981 0.988 0.992 0.987 0.991 0.995 0.990 0.994 0.989

Oriented Model35

P 0.950 0.973 0.955 0.958 0.960 0.935 0.959 0.982 0.978 0.970 0.962

R 0.940 0.969 0.950 0.953 0.957 0.932 0.956 0.979 0.977 0.968 0.959

F1 0.945 0.971 0.952 0.955 0.959 0.934 0.957 0.980 0.978 0.969 0.961

mAP 0.975 0.984 0.979 0.987 0.991 0.986 0.990 0.995 0.988 0.993 0.982

DCNN-Based36

P 0.925 0.945 0.938 0.940 0.942 0.920 0.936 0.970 0.965 0.959 0.944

R 0.910 0.932 0.928 0.935 0.938 0.917 0.934 0.967 0.962 0.956 0.941

F1 0.917 0.938 0.932 0.937 0.940 0.918 0.935 0.968 0.964 0.958 0.944

mAP 0.955 0.968 0.960 0.974 0.983 0.977 0.985 0.990 0.984 0.987 0.976

Table 11. Performance comparison of proposed and advanced models on NWPU VHR-10 dataset.

 

Model Class Aircraft Oiltank Overpass Playground Average

Proposed

P 0.965 0.978 0.967 0.951 0.965

R 0.913 0.944 0.918 0.968 0.936

F1 0.938 0.961 0.946 0.959 0.951

mAP 0.953 0.977 0.982 0.989 0.975

YOLO-SE34

P 0.967 0.964 0.804 0.925 0.915

R 0.899 0.918 0.778 0.968 0.891

F1 0.932 0.940 0.791 0.946 0.902

mAP 0.948 0.982 0.854 0.989 0.943

Oriented Model35

P 0.955 0.948 0.798 0.915 0.904

P 0.955 0.948 0.798 0.915 0.904

R 0.891 0.890 0.772 0.954 0.877

F1 0.922 0.919 0.784 0.934 0.890

mAP 0.932 0.968 0.844 0.984 0.932

DCNN-Based36

P 0.910 0.938 0.834 0.915 0.899

R 0.887 0.920 0.810 0.948 0.891

F1 0.898 0.929 0.822 0.931 0.895

mAP 0.921 0.958 0.820 0.964 0.916

Table 10. Performance comparison of the proposed and advanced models on the RSOD dataset.
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The results indicate that the proposed framework significantly outperforms YOLOv9-S and YOLOv9-E 
regarding mAP@0.5 and mAP@0.5:0.95, confirming its enhanced ability to detect small and occluded objects. 
Although the YOLOv9 models excel in inference speed and model efficiency, the proposed framework is well-
suited for high-resolution remote sensing images and challenging environments, making it more practical for 
real-world applications. These findings validate the use of Advanced StyleGAN and the Swin Transformer in 
addressing remote sensing and object detection challenges. The inference measured time using an NVIDIA RTX 
3090 GPU in this context. Using a CPU or less powerful GPU would yield different timing results, encouraging 
readers to account for hardware differences in their deployments. At the same time, the current focus is on high-
end GPU performance to recognize the importance of edge applications. We actively explore model compression 
(pruning, quantization) and half-precision inference to reduce the model’s computational footprint. Early tests 
suggest we can retain much of the accuracy while shrinking the memory and speed requirements, making this 
framework more accessible to edge devices shortly.

Ablation analysis and component impact evaluation
An ablation analysis was conducted to assess further the importance of various components in the proposed 
framework. This involved systematically adjusting or removing key framework elements and evaluating their 
impact on performance. For consistency, the VEDAI-VISIBLE, VEDAI-IR, and DOTA datasets were used to 
maintain identical training and testing protocols. The framework underwent 100 epochs of simulation with the 
same preprocessing, learning rate scheduling, and optimizer configurations.

The components evaluated in the analysis included Advanced StyleGAN for super-resolution, the Swin 
Transformer, the hierarchical attention mechanism, and preprocessing techniques such as rotation, cropping, 
flipping, and feature aggregation through concatenation or summation. By selectively disabling or replacing 
each component, we measured its effect on key performance metrics, includingmAP@0.5, mAP@0.5:0.95, and 
inference time. The results of this analysis are summarized in Table 13, which illustrates the impact of each 
component on detection precision and speed.

The analysis shows that each component contributes satisfactorily to the framework’s performance. For 
example, the training data is augmented by preprocessing, which enriches the training data and improves 
detection results. The contribution of Advanced StyleGAN to higher mAP scores lies in the fact that it 
increases the resolution of input images. In contrast, the Swin Transformer achieves better feature extraction by 
introducing the hierarchical attention mechanism. The multi-level features can further improve performance 
through feature aggregation. The ablation study verifies that using super-resolution, feature enhancement, and 
preprocessing is essential in tackling the problems posed by remote sensing, namely the detection of objects that 
are small, occluded, and scale variants. These findings support the design decisions made during the framework 
development.

Discussion
This study shows the effectiveness of the proposed hybrid approach, which combines Advanced StyleGAN and 
the Swin Transformer for super-resolution and object detection in remote sensing imagery. Further assessments 
of the method’s performance were done on the highly diverse object classes of the NWPU VHR-10 and RSOD 
datasets. Its model can reconstruct finer object details, significantly improving precision and recall rates over 
several state-of-the-art models on various classes.

The Swin Transformer features a hierarchical structure and self-attention mechanism that captures long-
range dependency well and removes strong juxtaposition effects by eliminating the average operations. When 
compared to conventional CNN architectures such as VGG and ResNet, this advantage is shown to be especially 
important when compared to small or elongated objects.

A super resolution module is also included to improve image quality at the expense of some trade-offs, which 
further improves detection accuracy. This improvement adds performance but also complexity, computational 
complexity, and inference, which is undesirable for real-time applications. However, the model maintains high 
precision and recall even in challenging scenarios, including low light and heavy cloud cover, while having their 
constituents as noisy and degraded images.

Still, refinement is needed in the model’s ability to perform well in cluttered or high-density environments, 
such as urban areas with closely packed buildings. Overall, the proposed hybrid approach is an important step 

Experiment
Advanced 
StyleGAN

Swin 
Transformer Augmentation

Feature 
Aggregation

mAP@0.5 
(%)

mAP@0.5:0.95 
(%)

Inference 
Time 
(ms)

Only Swin Transformer ✗ ✓ ✗ ✗ 84.3 65.2 36

Swin Transformer + Augmentation ✗ ✓ ✓ ✗ 86.1 67.4 38

Advanced StyleGAN Only ✓ ✗ ✗ ✗ 87.6 68.1 40

StyleGAN + Basic Transformer ✓ Basic 
Transformer ✗ ✗ 90.3 69.5 39

StyleGAN + Swin Transformer Without Aug. ✓ ✓ ✗ ✗ 92.5 70.4 41

StyleGAN + Swin Transformer + No Feature Agg. ✓ ✓ ✓ ✗ 94.8 71.5 41

Full Framework ✓ ✓ ✓ ✓ 97.2 72.8 42

Table 13. Detailed ablation analysis of the proposed framework.
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toward more accurate detection and environment robustness compared with existing methods, and it suggests 
that it will find applications in most remote sensing task areas.

Conclusion and future work
This research presents an object detection method that drastically improves the detection of small objects in low-
resolution remote sensing images. The proposed approach outperforms existing methods in improving image 
features and details. This integrated framework has been efficient in benchmark dataset analysis and consistently 
surpasses existing remote sensing object detection techniques. The experimental results indicate that the Swin 
Transformer is superior to YOLOv7 and YOLOv5, especially in low light and cloud cover images. Advanced 
StyleGAN further improves image quality, with higher detection rates in various environmental conditions. 
Performances on the RSOD and NWPU VHR-10 datasets demonstrated the proposed method’s superiority in 
detection accuracy and object class robustness. Additionally, it outperforms the latest YOLOv9 series models 
and can serve as a benchmark for remote sensing object detection. The next step is to adapt this framework for 
deployment on edge devices to support real-time data analysis in remote areas. Such an advancement would be 
greatly useful in real-time disaster response and environmental monitoring. Additionally, further work is needed 
to explore the generalization of the proposed methodologies within a domain adaptation framework and self-
supervised learning. For example, StyleGAN could be adapted to new geographies or imaging sensors by training 
on unlabeled or partially labeled data from the target domainand then fine-tuning the Swin Transformer with a 
smaller labeled subset. This way, the model could capture domain-specific textures, lighting, or environmental 
features. Similarly, self-supervised strategies—like masked image modeling or contrastive learning—could 
help the network learn fundamental representations of remote sensing images without large, labeled datasets. 
Integrating these ideas in future iterations may further boost the model’s versatility and resilience across diverse 
real-world settings.

Data availability
Data is provided within the manuscript.
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