Detection of cotton crops diseases using customized deep learning model
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, crop maturity assessment, and disease detection. The cotton crop is an essential source of revenue for many countries highlighting the need to protect it from deadly diseases that can drastically reduce yields. Early and accurate disease detection is quite crucial for preventing economic losses in the agricultural sector. Thanks to deep learning algorithms, researchers have developed innovative disease detection approaches that can help safeguard the cotton crop and promote economic growth. This study presents dissimilar state-of-the-art deep learning models for disease recognition including VGG16, DenseNet, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet models. For this purpose, real cotton disease data is collected from fields and preprocessed using different well-known techniques before using as input to deep learning models. Experimental analysis reveals that the ResNet152 model outperforms all other deep learning models, making it a practical and efficient approach for cotton disease recognition. By harnessing the power of deep learning and artificial intelligence, we can help protect the cotton crop and ensure a prosperous future for the agricultural sector.
metadata
Faisal, Hafiz Muhammad; Aqib, Muhammad; Rehman, Saif Ur; Mahmood, Khalid; Aparicio Obregón, Silvia; Calderón Iglesias, Rubén y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, SIN ESPECIFICAR
(2025)
Detection of cotton crops diseases using customized deep learning model.
Scientific Reports, 15 (1).
ISSN 2045-2322
![]() |
Texto
s41598-025-94636-4.pdf Available under License Creative Commons Attribution Non-commercial No Derivatives. Descargar (3MB) |
Resumen
The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, crop maturity assessment, and disease detection. The cotton crop is an essential source of revenue for many countries highlighting the need to protect it from deadly diseases that can drastically reduce yields. Early and accurate disease detection is quite crucial for preventing economic losses in the agricultural sector. Thanks to deep learning algorithms, researchers have developed innovative disease detection approaches that can help safeguard the cotton crop and promote economic growth. This study presents dissimilar state-of-the-art deep learning models for disease recognition including VGG16, DenseNet, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet models. For this purpose, real cotton disease data is collected from fields and preprocessed using different well-known techniques before using as input to deep learning models. Experimental analysis reveals that the ResNet152 model outperforms all other deep learning models, making it a practical and efficient approach for cotton disease recognition. By harnessing the power of deep learning and artificial intelligence, we can help protect the cotton crop and ensure a prosperous future for the agricultural sector.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | Agricultural economics, Deep learning, Cotton crop disease, Precision agriculture |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica |
Depositado: | 10 Abr 2025 23:30 |
Ultima Modificación: | 10 Abr 2025 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/17595 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
What works in financial education? Experimental evidence on program impact
Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.
Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,
García
en
close
Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.
Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,
Zhao
<a href="/17825/1/foods-14-02648-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Western dietary patterns worldwide are increasingly dominated by energy-dense, nutrient-deficient industrial foods, often identified as ultra-processed foods (UPFs). Such products may have detrimental health implications, particularly if nutritionally inadequate. This study aimed to examine the intake of unhealthy UPFs among children and adolescents from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) involved in the DELICIOUS project and to assess the association with dietary quality indicators. Methods: A survey was conducted with a sample of 2011 parents of children and adolescents aged 6 to 17 years to evaluate their dietary habits. Diet quality was assessed using the Youth Healthy Eating Index (Y-HEI), the KIDMED index to determine adherence to the Mediterranean diet, and compliance with national dietary guidelines. Results: Increased UPF consumption was not inherently associated with healthy or unhealthy specific food groups, although children and adolescents who consumed UPF daily were less likely to exhibit high overall diet quality and adherence to the Mediterranean diet. In all five countries, greater UPF intake was associated with poorer compliance with dietary recommendations concerning fats, sweets, meat, and legumes. Conclusions: Increased UPF consumption among Mediterranean children and adolescents is associated with an unhealthy dietary pattern, possibly marked by a high intake of fats, sweets, and meat, and a low consumption of legumes.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Achraf Ammar mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Nunzia Decembrino mail , Alessandro Scuderi mail , Alice Leonardi mail , Lorenzo Monasta mail , Fernando Maniega Legarda mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a class="ep_document_link" href="/17826/1/foods-14-02445.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends.
Di Zhang mail , Efakor Beloved Ahlivia mail , Benjamin Bonsu Bruce mail , Xiaobo Zou mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Dragiša Savić mail , Jaroslav Katona mail , Lingqin Shen mail ,
Zhang