Organ‐on‐Chip: The Future of Nutrition Research in a One Health World

Artículo Materias > Alimentación Universidad Europea del Atlántico > Investigación > Artículos y libros Abierto Inglés The One Health approach emphasizes the interconnectedness of human, animal, and environmental health, recognizing that the health of each is interdependent and influenced by shared ecosystems. Nutrition research plays a critical role in improving health outcomes across these domains, with implications for sustainability and food security. Organ-on-chip (OoC) technologies have emerged as innovative tools replicating key organ functions, supporting disease modeling, drug discovery, and personalized medicine. They also hold promise as alternatives to traditional animal models. This systematic review examines the potential of OoC technologies within the One Health framework and nutrition research, focusing on (1) their ability to replicate human and animal organ functions, (2) applications in food safety and ecotoxicology, and (3) their use in studying food components’ health effects. Challenges and future directions for adoption are also discussed. Although fully replicating the complexity of in vivo physiology remains a challenge, OoCs offer a promising platform to simulate organ functions and interactions. These systems hold significant potential for advancing food safety assessments, studying food impacts on health, and addressing sustainability in food systems. Challenges such as standardization, scalability, accessibility, and biases toward traditional models remain. Despite these hurdles, current advancements underscore the versatility and promise of OoCs, positioning them as valuable tools for driving innovation in nutrition research, food and feed safety, and ecotoxicology. With continued progress, OoCs are poised to make significant contributions to the goals of the One Health framework. metadata Cassotta, Manuela; Elexpuru Zabaleta, Maria; Sumalla Cano, Sandra; Diaz, Yasmany Armas; Giampieri, Francesca; Xiaobo, Zou; Zhang, Di; Grosso, Giuseppe y Battino, Maurizio mail manucassotta@gmail.com, maria.elexpuru@uneatlantico.es, sandra.sumalla@uneatlantico.es, SIN ESPECIFICAR, francesca.giampieri@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, maurizio.battino@uneatlantico.es (2025) Organ‐on‐Chip: The Future of Nutrition Research in a One Health World. Food Frontiers. ISSN 2643-8429

[img] Texto
Food Frontiers - 2025 - Cassotta - Organ‐on‐Chip The Future of Nutrition Research in a One Health World.pdf
Available under License Creative Commons Attribution.

Descargar (2MB)

Resumen

The One Health approach emphasizes the interconnectedness of human, animal, and environmental health, recognizing that the health of each is interdependent and influenced by shared ecosystems. Nutrition research plays a critical role in improving health outcomes across these domains, with implications for sustainability and food security. Organ-on-chip (OoC) technologies have emerged as innovative tools replicating key organ functions, supporting disease modeling, drug discovery, and personalized medicine. They also hold promise as alternatives to traditional animal models. This systematic review examines the potential of OoC technologies within the One Health framework and nutrition research, focusing on (1) their ability to replicate human and animal organ functions, (2) applications in food safety and ecotoxicology, and (3) their use in studying food components’ health effects. Challenges and future directions for adoption are also discussed. Although fully replicating the complexity of in vivo physiology remains a challenge, OoCs offer a promising platform to simulate organ functions and interactions. These systems hold significant potential for advancing food safety assessments, studying food impacts on health, and addressing sustainability in food systems. Challenges such as standardization, scalability, accessibility, and biases toward traditional models remain. Despite these hurdles, current advancements underscore the versatility and promise of OoCs, positioning them as valuable tools for driving innovation in nutrition research, food and feed safety, and ecotoxicology. With continued progress, OoCs are poised to make significant contributions to the goals of the One Health framework.

Tipo de Documento: Artículo
Palabras Clave: alternatives to animal testing; ecotoxicology; food safety; nutrition research; One Health; organ-on-chip
Clasificación temática: Materias > Alimentación
Divisiones: Universidad Europea del Atlántico > Investigación > Artículos y libros
Depositado: 31 Mar 2025 23:30
Ultima Modificación: 31 Mar 2025 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/17451

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

en

close

A novel machine learning-based proposal for early prediction of endometriosis disease

Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.

Artículos y libros

Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,

Enamorado-Díaz

en

close

Effects of strength training with free weights and elastic resistance in older adults: A randomised clinical study

Background The aging process leads to negative changes in various bodily systems, including the neuromuscular system. Strength training, is considered the best strategy to counteract these neuromuscular changes, preventing sarcopenia and frailty in older adults. Objective To compare the effects of strength training with elastic resistance and free weights on the muscle strength of knee extensors and flexors and functional performance in the older adults. Methods This was a randomised clinical study. Thirty-one participants of both sexes were allocated randomly into two groups: Training Group Free Weight (TGFW, n = 15) and Training Group with Elastic Resistance (TGER, n = 16). Two individuals were excluded and so, twenty-nine individuals were evaluated before and after eight weeks training protocol, which was performed three times a week. The determination of the training load was obtained using a protocol of 10 repetitions maximum. Results No significant differences were found in either the intra- or the inter-group comparisons, on functional performance and peak muscle strength. In the intra-groups (pre- and post-strength training), it was observed that both groups significantly increased the training load (10 RM) for the extensors (TGFW p = 0.0002; TGER p = 0.0001) and the knee flexors (TGFW p = 0.006; TGER p = 0.0001). Conclusion Both training protocols similarly were effective in increasing the training load observed by the 10 RM test of the extension and flexion movements of the knee.

Artículos y libros

Rafaela Zanin Ferreira mail , Antonio Felipe Souza Gomes mail , Marco Antonio Ferreira Baldim mail , Ricardo Silva Alves mail , Leonardo César Carvalho mail , Adriano Prado Simão mail ,

Ferreira

<a href="/17061/1/fspor-1-1565900.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Tensiomyography, functional movement screen and counter movement jump for the assessment of injury risk in sport: a systematic review of original studies of diagnostic tests

Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.

Artículos y libros

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,

Velarde-Sotres

<a href="/17139/1/s41598-025-89266-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Harnessing AI forward and backward chaining with telemetry data for enhanced diagnostics and prognostics of smart devices

In the rapidly evolving landscape of artificial intelligence (AI) and the Internet of Things (IoT), the significance of device diagnostics and prognostics is paramount for guaranteeing the dependable operation and upkeep of intricate systems. The capacity to precisely diagnose and preemptively predict potential failures holds the potential to considerably amplify maintenance efficiency, diminish downtime, and optimize resource allocation. The wealth of information offered by telemetry data gathered from IoT devices presents an opportunity for diagnostics and prognostics applications. However, extracting valuable insights and making well-timed decisions from this extensive data reservoir remains a formidable challenge. This study proposes a novel AI-driven framework that integrates forward chaining and backward chaining algorithms to analyze telemetry data from IoT devices. The proposed methodology utilizes rule-based inference to detect real-time anomalies and predict potential future failures, providing a dual-layered approach for diagnostics and prognostics. The results show that the diagnostics engine using forward chaining detects real-time issues like “High Temperature” and “Low Pressure,” while the prognostics engine with backward chaining predicts potential future occurrences of these issues, enabling proactive prevention measures. The experimental results demonstrate that adopting this approach could offer valuable assistance to authorities and stakeholders. Accurate early diagnosis and prediction of potential failures have the capability to greatly improve maintenance efficiency, minimize downtime, and optimize cost.

Artículos y libros

Muhammad Shoaib Farooq mail , Rizwan Pervez Mir mail , Atif Alvi mail , Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Fadwa Alrowais mail , Hanen Karamti mail , Imran Ashraf mail ,

Farooq