Incorporating soil information with machine learning for crop recommendation to improve agricultural output
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Docencia > Materiales Docentes
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
The agriculture field is the basis of a country’s change and financial system. Crops are the main source of revenue for the people. One of the farmer’s most challenging problems is choosing the right crops for their land. This critical decision has a direct impact on productivity and profit. Wrong crop selection not only reduces yields but also causes food shortages, creating more problems for farmers. The best crop depends on many parameters such as illustration humidity, N, K, P, pH, rainfall, and temperature of the soil. Getting advice from experts is not an easy task. This requires intelligent models in crop recommendations that use machine-learning models to suggest suitable crops for soil and other environmental conditions. Temperature, humidity, and pH are important data for growing crops in agriculture. In this study, we gather and preprocess relevant data. To recommend the most suitable crop, we propose a novel ensemble learning approach called RFXG based on random forest (RF) and extreme gradient boosting (XGB) to suggest the best crop out of the twenty-two major crops. To measure the capability of the proposed approach, various machine learning models are utilized including extra tree classifier, multilayer perceptron, RF, decision trees, logistic regression, and XGB classifiers. To get the best performance, optimization of hyperparameter, and K-fold cross-validation procedures are performed. Experimental outcomes show that the proposed RFXG technique achieves a recommendation accuracy is 98%. Specifically, the proposed solution provides immediate recommendations to help farmers make timely decisions.
metadata
Afzal, Hadeeqa; Amjad, Madiha; Raza, Ali; Munir, Kashif; Gracia Villar, Santos; Dzul López, Luis Alonso y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, SIN ESPECIFICAR
(2025)
Incorporating soil information with machine learning for crop recommendation to improve agricultural output.
Scientific Reports, 15 (1).
ISSN 2045-2322
![]() |
Texto
s41598-025-88676-z.pdf Available under License Creative Commons Attribution Non-commercial No Derivatives. Descargar (3MB) |
Resumen
The agriculture field is the basis of a country’s change and financial system. Crops are the main source of revenue for the people. One of the farmer’s most challenging problems is choosing the right crops for their land. This critical decision has a direct impact on productivity and profit. Wrong crop selection not only reduces yields but also causes food shortages, creating more problems for farmers. The best crop depends on many parameters such as illustration humidity, N, K, P, pH, rainfall, and temperature of the soil. Getting advice from experts is not an easy task. This requires intelligent models in crop recommendations that use machine-learning models to suggest suitable crops for soil and other environmental conditions. Temperature, humidity, and pH are important data for growing crops in agriculture. In this study, we gather and preprocess relevant data. To recommend the most suitable crop, we propose a novel ensemble learning approach called RFXG based on random forest (RF) and extreme gradient boosting (XGB) to suggest the best crop out of the twenty-two major crops. To measure the capability of the proposed approach, various machine learning models are utilized including extra tree classifier, multilayer perceptron, RF, decision trees, logistic regression, and XGB classifiers. To get the best performance, optimization of hyperparameter, and K-fold cross-validation procedures are performed. Experimental outcomes show that the proposed RFXG technique achieves a recommendation accuracy is 98%. Specifically, the proposed solution provides immediate recommendations to help farmers make timely decisions.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | Agricultural economics, Smart agriculture, Soil parameters, Crop recommendation, Smart farming, Machine learning, Ensemble model |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional do Cuanza > Docencia > Materiales Docentes Universidad de La Romana > Investigación > Producción Científica |
Depositado: | 17 Mar 2025 23:30 |
Ultima Modificación: | 17 Mar 2025 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/17272 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
What works in financial education? Experimental evidence on program impact
Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.
Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,
García
en
close
Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.
Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,
Zhao
<a href="/17825/1/foods-14-02648-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Western dietary patterns worldwide are increasingly dominated by energy-dense, nutrient-deficient industrial foods, often identified as ultra-processed foods (UPFs). Such products may have detrimental health implications, particularly if nutritionally inadequate. This study aimed to examine the intake of unhealthy UPFs among children and adolescents from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) involved in the DELICIOUS project and to assess the association with dietary quality indicators. Methods: A survey was conducted with a sample of 2011 parents of children and adolescents aged 6 to 17 years to evaluate their dietary habits. Diet quality was assessed using the Youth Healthy Eating Index (Y-HEI), the KIDMED index to determine adherence to the Mediterranean diet, and compliance with national dietary guidelines. Results: Increased UPF consumption was not inherently associated with healthy or unhealthy specific food groups, although children and adolescents who consumed UPF daily were less likely to exhibit high overall diet quality and adherence to the Mediterranean diet. In all five countries, greater UPF intake was associated with poorer compliance with dietary recommendations concerning fats, sweets, meat, and legumes. Conclusions: Increased UPF consumption among Mediterranean children and adolescents is associated with an unhealthy dietary pattern, possibly marked by a high intake of fats, sweets, and meat, and a low consumption of legumes.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Achraf Ammar mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Nunzia Decembrino mail , Alessandro Scuderi mail , Alice Leonardi mail , Lorenzo Monasta mail , Fernando Maniega Legarda mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a class="ep_document_link" href="/17826/1/foods-14-02445.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends.
Di Zhang mail , Efakor Beloved Ahlivia mail , Benjamin Bonsu Bruce mail , Xiaobo Zou mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Dragiša Savić mail , Jaroslav Katona mail , Lingqin Shen mail ,
Zhang