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Abstract: Strong evidence supports the paramount importance of the composition of the diet for
health. Not only diet should provide nutritional adequacy, but some foods and dietary components
can also support the management of common chronic diseases, with mechanisms independent of
nutritional adequacy. Among the various intervention diets, low-fat vegan diets have been shown to
be effective for cardiometabolic health, mainly influencing insulin resistance, adiposity, and blood
lipids. This type of diet relies on reducing or eliminating all added fats and choosing low-fat foods,
mainly unprocessed whole-plant foods. We hereby propose a tool for planning low-fat vegan diets,
the VegPlate Low-Fat (VP_LF), which has been obtained from a specific adaptation of the VegPlate
method, which was already presented in previous publications for adults and some life stages and
situations. The reduction in fats in the diet, which ranges between 10% and 15% of total energy, and
the varied inclusion of foods from plant groups make it easier to provide adequate amounts of all
nutrients with a normal- or lower-calorie intake, in comparison with diets that do not limit fat intakes.
We expect that this new proposal will help nutrition professionals embrace low-fat diets as a first-line
intervention for individuals affected by different health conditions who can benefit from these diets.

Keywords: low-fat diet; vegan diet; food guide; VegPlate

1. Introduction

Vegetarian diets include lacto-ovo-vegetarian and vegan diets. Both diets exclude
the consumption of animal flesh, and the latter also excludes the consumption of animal
derivatives such as eggs, dairy products (milk and cheese), and honey. In both subtypes,
the main calorie sources come from the consumption of grains, legumes, fruits, vegetables,
nuts and seeds, and plant oils. The nutritional adequacy of vegetarian diets has been
described by the main international nutrition organizations [1–4].

Strong evidence supports the paramount importance of the composition of the diet for
health. Not only should diet provide nutritional adequacy but also some foods and dietary
components can support the management of common chronic diseases, with mechanisms
independent of nutritional adequacy. Higher AHEI scores (Alternative Healthy Eating
Index), which estimate diet quality, have been associated with a lower risk of chronic
diseases including cardiovascular disease, cancer, and diabetes mellitus [5–7].

The extensive scientific literature supports the favorable health effect of vegetarian
diets on cardiometabolic health and cancer [8–12]. Moreover, intervention trials with
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low-fat diets—mainly performed on overweight and/or diabetic adults—support the
effectiveness of reducing the amount of fat in the diet for cardiometabolic health [13–15].
Despite that the global risk–benefit ratio of this kind of intervention cannot be established in
the short duration of a trial, the paradigm shift proposed by Sabaté suggested that the risk
of deficiency reported for some kinds of vegetarian diets does not overcome their favorable
health effects [16]. The AHEI score has been shown to significantly improve on a low-fat
vegan diet [17]. Compared with the NCEP diet (National Cholesterol Education Program),
a low-fat vegan diet improved body weight, insulin sensitivity, the thermic effect of food,
and resting metabolic rate after 14 weeks in 64 overweight, postmenopausal women [18].

This kind of diet relies on reducing or eliminating all added fats and choosing low-fat
foods, mainly unprocessed whole-plant foods. To our knowledge, a universal method for
planning low-fat vegan diets does not exist, and health professionals are puzzled when
added fats in the diet are limited. Clinical trials with low-fat vegan diets are performed
by offering dietary instructions to participants. Conversely, a method providing practical
instructions for professionals, which can be used in their daily practice, could represent a
useful tool. We hereby propose a food guide for planning low-fat vegan diets, the VegPlate
Low-Fat (VP_LF), which has been obtained with a specific adaptation of the VegPlate
method, already presented in previous publications for adults and some life stages and
situations [19–21].

2. Materials and Methods

We developed a facilitative method for health professionals who choose to use a low-
fat vegan diet as a non-pharmacological approach to the treatment of some cardiometabolic
diseases: the VegPlate Low-Fat (VP_LF). To this aim, we referred to the VegPlate method,
which was first published in 2018 to offer a simple food guide for well-planning vegetarian
diets (lacto-ovo and vegan) [19].

2.1. The Basic VegPlate Method

In the basic VegPlate method, foods were classified into “food groups”, and a “servings
system” was proposed for the amount of food to use. The food groups were represented in
a main diagram in the form of a plate, subdivided into six areas: one area for each food
group (grains, protein-rich foods, vegetables, fruits, nuts and seeds, and fats—the latter
corresponding to added fats of plant origin), and an outer plate or glass for discretionary
calories (i.e., the number of calories unnecessary to reach nutrient adequacy). The diagram
also included 2 cross-sectional groups: calcium-rich foods and n-3-rich foods. In the
center of the plate, vitamins B12 and D were collocated to highlight their importance in a
well-planned diet. The only difference between the two subtypes of vegetarian patterns
(lacto-ovo and vegan) was in the protein-rich food group, which included all the protein-
rich foods of plant origin and, only for lacto-ovo-vegetarian, dairy and egg derivatives. The
other five groups were identical. The food selection and serving size have been previously
described [19]: for each food group, we selected the most representative plant foods from
the Mediterranean tradition. The “servings system” suggested the amount of each food of
the same food group providing similar amounts of energy and nutrients, making it possible
to vary the food choices within the same group without the need for rigorous exchange
lists. One serving of calcium-rich foods provides an average of 125 mg of calcium and
should be included in the number of servings indicated in each group.

One serving of omega-3-rich foods provided an average of 2.5 g of alpha-linolenic
acid (ALA). According to the serving system, for each group, the consumption of a defined
number of servings is allowed to satisfy the calorie and nutrient requests.

Four versions of the VegPlate for specific life stages and situations have already
been obtained by simply modifying the number of servings for each food group and
adding supplementary small plates: Adult, Pregnancy and Lactation [19], Children and
Adolescents [20], and Athlete [21]. Working with the serving system, i.e., determining the
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amount of food to consume for each group expressed as the number of servings, made it
possible to satisfy the calorie and nutrient needs of each population group.

2.2. The Adaptation of the VegPlate to a Low-Fat Diet

A low-fat diet is a diet that minimizes the energy contribution from the macronutrient
fat. To this end, it is necessary to choose low-fat foods and avoid added fats. Therefore,
to obtain the VP_LF, we needed to modify the VegPlate main diagram: the two fatty food
groups (nuts and seeds, and fats) were replaced by one group, the n-3-rich food group, to
provide n-3 fats to the diet. Moreover, the protein-rich food group should only include
foods of plant origin.

Therefore, the VP_LF is composed of 5 fundamental food groups: (a) grains; (b) plant
protein-rich foods; (c) vegetables; (d) fruits; (e) n-3-rich foods, and a cross-sectional group
of calcium-rich foods, formed by the richest foods in calcium present in all the food groups
(with the exclusion of the n-3-rich food group). Vitamin B12 and vitamin D are always
placed at the center of the plate, and discretionary calories are placed outside the plate, as a
small dish or glass. The resulting diagram is presented in Figure 1. Since the number of
servings varies according to the caloric intake, the areas are representative only of the food
groups composing the plate, but not of the quantities.

Foods 2024, 13, x FOR PEER REVIEW 3 of 17 
 

 

Four versions of the VegPlate for specific life stages and situations have already been 
obtained by simply modifying the number of servings for each food group and adding 
supplementary small plates: Adult, Pregnancy and Lactation [19], Children and Adoles-
cents [20], and Athlete [21]. Working with the serving system, i.e., determining the amount 
of food to consume for each group expressed as the number of servings, made it possible 
to satisfy the calorie and nutrient needs of each population group. 

2.2. The Adaptation of the VegPlate to a Low-Fat Diet 
A low-fat diet is a diet that minimizes the energy contribution from the macronutri-

ent fat. To this end, it is necessary to choose low-fat foods and avoid added fats. Therefore, 
to obtain the VP_LF, we needed to modify the VegPlate main diagram: the two fatty food 
groups (nuts and seeds, and fats) were replaced by one group, the n-3-rich food group, to 
provide n-3 fats to the diet. Moreover, the protein-rich food group should only include 
foods of plant origin. 

Therefore, the VP_LF is composed of 5 fundamental food groups: (a) grains; (b) plant 
protein-rich foods; (c) vegetables; (d) fruits; (e) n-3-rich foods, and a cross-sectional group 
of calcium-rich foods, formed by the richest foods in calcium present in all the food groups 
(with the exclusion of the n-3-rich food group). Vitamin B12 and vitamin D are always 
placed at the center of the plate, and discretionary calories are placed outside the plate, as 
a small dish or glass. The resulting diagram is presented in Figure 1. Since the number of 
servings varies according to the caloric intake, the areas are representative only of the food 
groups composing the plate, but not of the quantities. 

 

Figure 1. The VegPlate Low-Fat (VP_LF).



Foods 2024, 13, 4050 4 of 16

Throughout the different VegPlates, the serving dimension is constant, and the same
is true for the VP_LF, as shown in Table 1. The IEO (European Institute of Oncology) food
database we used to calculate the nutritional composition of each serving was updated
according to the 2022 release [22].

Table 1. The serving size of the foods composing the VP_LF [22].

Food Serving Size

1. Grains

Bread, baked cereals (dried) 30 g
Grain cereals, bulgur, couscous 30 g

Pasta (dried) 30 g
Pop-corn (cooked) 30 g

Ready-to-eat cereals 30 g
Non-dairy milk from cereals 200 mL

(Potatoes—if consumed frequently) 120 g

2. Protein-rich foods

Legumes (dried) 30 g
Tofu or tempeh 80 g

Meat alternatives 30 g
Non-dairy milk from soy 200 mL

Soy yogurt 125 mL

3. Vegetables

Raw or cooked vegetables 100 g
Vegetable juice 100 mL

4. Fruits

Raw fruits 150 g
Cooked fruits 150 g

Fruit juice 150 mL
Dried fruits 30 g

5. n-3-rich foods

Flaxseeds (grounded) 10 g
Flaxseed oil 5 g

Walnuts 30 g (n = 6)
Chia seeds (ground). 15 g

6. Calcium-rich foods

Listed in Table 2

Table 2. The calcium-rich foods of the VP_LF [22].

Food Ca (mg/100 g) Serving Size Ca (mg/Serving)

Grains

Non-dairy milk from rice
(enriched with calcium) 123.5 200 mL 247

(=2 servings)

Protein-rich foods

Soy yogurt
(enriched with calcium) 132 125 mL 165

Non-dairy milk from soy
(enriched with calcium) 120 200 mL 240

(=2 servings)

Tempeh 120 80 g 96

Tofu 105 80 g 84
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Table 2. Cont.

Food Ca (mg/100 g) Serving Size Ca (mg/Serving)

Vegetables

Dandelion 187 100 g 187

Watercress 170 100 g 170

Rocket 160 100 g 160

Chicory 150 100 g 150

Garden cress 131 100 g 131

Green radicchio 115 100 g 115

Turnip tops 97 100 g 97

Cardoon 96 100 g 96

Endive 93 100 g 93

Artichoke 86 100 g 86

Broccoli 72 100 g 72

Fruits

Figs (dried) 280 30 g 84

Water

Mineral water, calcium 350 mg/L 35 350 mL 125

Tap water, calcium 100 mg/L 10 1250 mL 125

To reduce fat intake in the VP_LF, non-ultra-processed plant foods should be empha-
sized, and an n-3-fat supplement (at least 200–250 mg EPA/DHA) should be included to
compensate for the reduction in the intake of ALA from 5 g/d, like in all the VegPlates, to
2.5 g/d. Moreover, discretionary calories should be derived from low-fat foods. It is also
recommended to supplement vitamin B12 and vitamin D and to emphasize calcium-rich
foods (see Table 2). To reduce fiber content and the mass of vegetables and fruits, it is
suggested that they be consumed, at least in part, as extracts and juices.

3. Results

Like in all the different adaptations of the VegPlate, in the VP_LF, the average nutri-
tional composition of one serving from each group was used to determine the daily number
of servings to consume from each group to satisfy the Italian DRIs [23], which also met the
USDA, Canada, and UK DRIs [24–26].

We choose to display the number of servings suggested for calorie requirements
ranging from 1600 to 3000 kcal in Table 3 because, above this calorie level, nutrient needs
are largely respected, and it is possible to obtain a higher calorie intake by simply adding
more foods from the grains, protein-rich foods, vegetables, and fruits groups. We offer
an example, which is not mandatory, for calorie intakes from 3100 to 4000 kcal in the
Supplemental Table S1. According to FAO [27], n-3-fatty acids should represent 0.5–2% of
total energy and should include 250 mg of EPA/DHA, which can also be endogenously
converted from ALA. Two servings of n-3-rich foods from the VegPlate can satisfy these
recommendations by providing the amount of ALA to be converted in EPA/DHA [28–30],
thanks also to the low n-6/n-3 ratio of the menus (ranging from 1.63:1 to 1.98:1). Since
above 3000 kcal, 2 servings of n-3-rich foods are planned to be consumed, EPA/DHA
supplementation is unnecessary.

Table 4 shows the nutritional composition (energy, fiber, macronutrients, and main
micronutrients) of the serving patterns proposed in Table 3, and the Italian, Canadian, UK,
and US DRIs. As evident from Table 5, the average percentage of fats in the diets ranges
from 15% (for the lower calories) to 10% (for the higher calories), and the n-6/n-3 ratio
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(calculated only from foods, not supplements) always falls far below the minimum 4:1 ratio
recommended by the main institutions [31]. Table S2 shows the multiple steps needed to
obtain a sample menu.

Table 3. Number of servings suggested for calorie intake from 1600 to 3000 kcal.

Grains Protein-Rich Foods Vegetables Fruits n-3-Rich Foods Discretionary Calories

1600 8 4 8 2 1 141

1700 9 4 8 2 1 160

1800 9 4 8 3 1 191

1900 10 4 8 3 1 211

2000 10 4 8 4 1 242

2100 11 4 9 4 1 238

2200 11 4 9 5 1 269

2300 12 4 9 5 1 289

2400 12 4 9 6 1 320

2500 13 4 9 6 1 339

2600 13 4 9 7 1 370

2700 14 4 9 7 1 389

2800 14 4 9 8 1 420

2900 15 4 9 8 1 439

3000 15 4 9 9 1 471

Table 4. Nutritional composition of the serving patterns proposed in Table 3 ([23,25,26,32]).

Protein
(g)

Carbo
Hydrate

(g)
Fat
(g)

Fiber
(g)

Iron
(mg)

Calcium
(mg)

Zinc
(mg)

Vitamin B1
(mg)

Vitamin
B2

(mg)
Vitamin B3

(mg)
Folate
(mcg)

ALA
(g)

1600 75.25 228.93 27.27 50.35 25.21 1087.72 11.41 1.90 2.38 22.30 947.48 3.76

1700 77.72 245.47 27.90 51.91 25.88 1119.67 11.87 1.98 2.43 23.62 961.21 3.77

1800 78.77 260.66 28.21 54.48 26.52 1154.10 12.09 2.04 2.49 24.17 975.36 3.80

1900 81.24 277.20 28.84 56.04 27.19 1186.06 12.55 2.11 2.54 25.49 989.08 3.81

2000 82.29 292.39 29.14 58.61 27.83 1220.49 12.77 2.17 2.60 26.04 1003.23 3.84

2100 86.74 312.16 30.07 62.46 29.78 1308.22 13.63 2.31 2.80 28.17 1087.09 3.91

2200 87.79 327.36 30.37 65.03 30.42 1342.65 13.85 2.37 2.86 28.72 1101.24 3.94

2300 90.26 343.89 31.00 66.59 31.09 1374.60 14.31 2.45 2.91 30.04 1114.96 3.95

2400 91.31 359.09 31.31 69.16 31.73 1409.04 14.53 2.51 2.97 30.59 1129.11 3.98

2500 93.78 375.62 31.94 70.72 32.40 1440.99 14.98 2.58 3.03 31.91 1142.83 3.99

2600 94.83 390.82 32.24 73.29 33.04 1475.43 15.20 2.64 3.08 32.46 1156.98 4.02

2700 97.30 407.35 32.87 74.86 33.71 1507.38 15.66 2.72 3.14 33.78 1170.70 4.03

2800 98.35 422.55 33.18 77.42 34.35 1541.81 15.88 2.78 3.19 34.33 1184.85 4.06

2900 100.82 439.08 33.81 78.99 35.01 1573.77 16.34 2.85 3.25 35.65 1198.58 4.07

3000 101.87 454.28 34.11 81.55 35.66 1608.20 16.56 2.91 3.31 36.20 1212.73 4.10

Italian
LARN

[23]
54–63

(0.9 g/kg/d)
45–60%
totalEn

20–35%
totalEn

12.6–16.7 g/
1000 kcal/d 10–18 950–1100 9–12 0.4 1.6 18 330 0.5–2%

totalEn

US
DRIs
[32]

46–56 130 nd 21–38 8–18 1000–1200 8–11 1.1–1.2 1.1–1.3 14–16 400 1.1–1.6

UK
DRVs
[25]

46.5–53.3
(0.75 g/kg/d) 39% 35% 12–24 8.7–14.8 700 7–9.5 0.4 mg/

1000 kcal 1.1–1.3 6.6 mg/
1000 kcal 200 0.2%

totalEn

Canada
DRIs
[26]

0.8 g/kg/d 130 nd 21–30 8–18 1000–1200 8–11 1.1–1.2 1.1–1.3 14–16 400 1.1–1.6
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Table 5. Percentage of total energy from macronutrients and discretionary calories, and amount of
LA, ALA, and n6/n3 ratio of the serving patterns proposed in Table 3.

Protein Carbohydrate Fat Discr. Calories LA (g) ALA (g) n-6/n-3 Ratio

1600 19% 57% 15% 9% 6.13 3.76 1.63

1700 18% 58% 15% 9% 6.31 3.77 1.67

1800 18% 58% 14% 11% 6.40 3.80 1.69

1900 17% 58% 14% 11% 6.58 3.81 1.73

2000 16% 58% 13% 12% 6.67 3.84 1.74

2100 17% 59% 13% 11% 6.92 3.91 1.77

2200 16% 60% 12% 12% 7.01 3.94 1.78

2300 16% 60% 12% 13% 7.19 3.95 1.82

2400 15% 60% 12% 13% 7.28 3.98 1.83

2500 15% 60% 11% 14% 7.46 3.99 1.87

2600 15% 60% 11% 14% 7.55 4.02 1.88

2700 14% 60% 11% 14% 7.73 4.03 1.92

2800 14% 60% 11% 15% 7.82 4.06 1.93

2900 14% 61% 10% 15% 8.00 4.07 1.97

3000 14% 61% 10% 16% 8.09 4.10 1.98

4. Discussion

Extensive scientific literature and several meta-analyses support the favorable health
effect of vegetarian diets on cardiometabolic health and cancer [8]. In comparison with
non-vegetarian diets, meta-analyses of observational [9,12,33] and intervention [34–37]
studies aiming to evaluate the effects of vegetarian diets on body weight found they can
favorably affect it. Vegetarian diets reduced diabetes risk in a meta-analysis of observa-
tional studies [38] and improved glycemic metabolism both in observational [12,33] and
intervention studies [36,39,40]. In meta-analyses of observational studies, lower blood
cholesterol levels were reported in vegetarians [9,12,33,41], and the same effect was found
in meta-analyses of intervention studies [36,37,40,41]. A reduction in blood pressure was
found in meta-analyses of observational studies [9,33,42] but was not consistently reported
in meta-analyses of intervention studies [36,40,42]. The incidence and mortality for vas-
cular disease, evaluated only in meta-analyses of observational studies, were reduced for
ischemic heart disease [12,43–45] and cardiovascular disease [9,45]. Also, meta-analyses on
cancer risk, which have been performed only on observational studies, found a reduction
in the risk in vegetarians [12,43,46,47]. For all outcomes, when vegans were evaluated
separately from other vegetarians, a further advantage was detected [9,12,35,41,47].

The abundance of fiber and water and the limited content of fats in unprocessed
plant foods are responsible for their low-calorie density, reducing the risk of excessive
energy intake. The thermic effect of foods increased after the consumption of large intakes
of carbohydrates and low intakes of fats [48], and plant foods favorably influenced the
regulation of appetite and the intake of food and energy by regulating the secretion of
gastrointestinal hormones [49,50]. Providing the body with molecules with antioxidant
properties, like compounds naturally contained in plants—especially when grown in harsh
environments—can protect the body from the damage caused by oxidative stress [51]:
the consumption of whole plant foods, rich in antioxidants, has been associated with a
reduction in the risk of major chronic diseases [52]. Accordingly, it has been reported
that a vegetarian diet can reduce the levels of oxidative stress markers and the oxidant–
antioxidant balance compared to an omnivore diet [53,54]. Moreover, a plant-based diet
can reduce iron accumulation in the tissues [55], which can be related to multiple health
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outcomes [56]. Plant foods can favor the growth of beneficial bacteria and a greater
richness and diversity of gut microbiota: it has been reported that vegetarians have a higher
Prevotella/Bacteroides ratio and a lower Firmicutes/Bacteroidetes ratio [57]. Short-chain fatty
acids (acetate, propionate, and butyrate), produced during the bacterial fermentation
of dietary fiber, elicit beneficial effects on immunity, inflammation, lipid and glucose
metabolism, gut barrier, and blood–brain barrier integrity [58–61]. Plasma and urinary
TMAO concentrations (trimethylamine N-oxide, a marker of cardiovascular disease risk)
are increased by dietary protein, particularly of animal origin, and reduced in subjects
following plant-based diets [62]. Low-grade chronic inflammation represents a common
underlying factor in chronic diseases [63–67]. Lower levels of inflammatory biomarkers,
mainly hsCRP, have been reported in vegetarians [68–71], suggesting that the reduction
in their circulating levels in subjects following a plant-based diet could reduce the risk of
chronic diseases. Accordingly, in a clinical trial performed on subjects affected by coronary
artery disease, a −32% significant reduction in hsCRP (high-sensitivity C-Reactive Protein,
a marker of risk for major adverse cardiovascular outcomes in coronary artery disease)
was observed after 8 weeks of a vegan diet, in comparison with the diet proposed by the
American Heart Association [72].

Adipose tissue and liver and muscle fat accumulation are associated with insulin
resistance [73,74]. Moreover, it has been shown that dietary fat acutely increases insulin
resistance in human skeletal muscles and glucose concentrations and insulin requirements
in patients with type 1 diabetes [75,76] and that high-fat meals elicit negative effects on
endothelial cells [77]. In contrast, intervention trials with low-fat diets, which have been
performed mainly on overweight and/or diabetic adults, support the effectiveness of reduc-
ing fat content in the diet for cardiometabolic health: low-fat and vegan diets lowered the
concentrations of intramyocellular and hepatocellular lipids, increased mitochondrial activ-
ity and postprandial metabolism, improved beta-cell function and insulin resistance, and
favored glycemic control [13–15]. In a 74-week trial involving 99 type-2 diabetic subjects,
in comparison with the diet of the American Diabetes Association, a low-fat vegan diet
reduced body weight, HbA1c, total and LDL-cholesterol, and diabetic medication [78,79].
In a 2-year randomized trial comparing a low-fat, vegan diet with the National Cholesterol
Education Program (NCEP) on 62 overweight, postmenopausal women, the low-fat vegan
diet was associated with significantly greater weight loss than the NCEP diet at 1 and
2 years [80]. In a 16-week intervention trial involving 244 overweight subjects, a low-fat
diet resulted in a reduction in body weight and hepatocellular and intramyocellular fat,
and increased insulin sensitivity, compared with the habitual diet [15]. Compared with
the Mediterranean diet, a low-fat vegan diet promoting ad libitum intake of unprocessed
plant foods and the avoidance of added fat improved body weight, lipid concentrations,
and insulin sensitivity, after 16 weeks in 62 overweight adults [81] and decreased dietary
AGE intakes. In a randomized 16-week cross-over trial, changes in dietary AGEs correlated
with changes in body weight, which decreased by 6 kg, compared with no change in the
Mediterranean diet [82]. In a multicenter clinical trial performed on employees from 10 sites
of a major US company with a body mass index ≥ 25 kg/m2 and/or a previous diagnosis
of type 2 diabetes, a vegan low-fat diet improved body weight, plasma lipids, and, in
individuals with diabetes, glycemic control after 18 weeks, compared with the habitual
diet [83].

Roberts et al., in their 3-week intervention trials on adults and children with a low-
fat, high-fiber diet combined with daily exercise, reported improvements in BP, oxidative
stress, NO availability, inflammation, monocyte–endothelial interactions, and metabolic
profile [84–86]. A 5-year intervention trial (the Lifestyle Heart Trial on Coronary Artery
Disease patients) performed by Ornish et al. with a lifestyle-intensive program also in-
cluded a vegetarian very low-fat diet (10% fat). In terms of coronary arteriography, the
control group experienced a 27.7% relative worsening in the average percentage of stenosis,
whereas the intervention group experienced a 7.9% relative improvement. Moreover, car-
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diac events occurred 2.5 times more frequently in the subjects who did not undergo the
intervention [87].

In a 2-year intervention study on 93 patients affected by prostate cancer undergoing
an intensive lifestyle program that included a vegan low-fat diet, only 5% of patients in
the intervention group required traditional treatment, whereas 27% in the control group
did [88]. Other authors reported a beneficial effect of a low-fat diet on prostate and
breast cancer, often in association with exercise [89–96]. It was suggested that one of the
mechanisms involved may be an increase in circulating IGFBP-1 (IGF binding protein-1)
and a decrease in serum IGF-I, resulting in reduced cancer cell growth [92,93].

Moreover, it has been reported that a low-fat diet can mitigate the symptoms of
menopause and the menstrual cycle by increasing the serum sex-hormone binding globulin
concentration and influencing estrogen activity and AGE levels [97–99]. It can also reduce
the intensity and frequency of migraine attacks [100,101].

A low-fat diet, included in a comprehensive lifestyle intervention, significantly in-
creased telomerase activity in a pilot study, hypothetically slowing the aging process
since telomere shortness in humans is emerging as a prognostic marker of disease risk,
progression, and premature mortality [102].

Recently, it has been proposed that a whole-food, low-fat vegan eating pattern can be
considered a new reference healthy eating pattern for a Universal Food Guide, which can
serve as a template for sustainable and healthy national food guides [103].

We aimed to provide a practical tool for well-planned low-fat diets. An innovative
plant-based food guide for vegetarians, the VegPlate, was conceived in 2017 and was
proposed for adults, pregnant and breastfeeding women [19], children and adolescents [20],
and athletes [21], thanks to adaptations of the basic structure of the VegPlate for adults.
Using this method, we conceived the VP_LF, a plant-based food guide for low-fat diets:
a reduction in added fats in the diet and the varied inclusion of foods from the plant
groups, mainly unprocessed, allowed us to obtain a low-fat vegan diet, offering a calorie
intake from fats ranging between 10% and 15% of the total energy. Natural plant foods do
not contain cholesterol, and fatty acids are mostly polyunsaturated or monounsaturated
(except for tropical fruits). Moreover, plant foods do not contain EPA and DHA, whose—
non univocally—suggested average daily amount is 250 mg/d [23,104]. In the VP_LF guide,
the only fat foods in the diet are placed in small amounts in the n-3-rich food group, which
includes selected foods containing high amounts of alfa-linolenic acid (ALA). The proposed
adequate intakes are 1.1 g/d for females and 1.6 g/d for males [32] or 0.5–2% of the total
energy (corresponding to 8–60 kcal from n-3 in the range 1600–3000 kcal), including 250 mg
EPA-DHA [23,27]. In the range of 1800–3000 kcal, VP_LF provides 3.76 to 4.10 g of ALA
(34–37 kcal). It has been reported that the rates of endogenous conversion from ALA to EPA
vary between 0.2% and 21%, and those to DHA vary between 0% and 9%, being higher in
women [30]. The conversion efficiency can be enhanced by reducing enzymatic competition
with linoleic acid, which essentially consists of increasing the intake of ALA, consuming
monounsaturated fats in place of n-6 polyunsaturated fats, and maintaining a low n-6/n-3
ratio, for which the main institutions suggest a minimum ratio of 4:1 [31,105]. In the VP_LF
guide, the n-6/n-3 ratio (calculated only from foods, not supplements) always falls far
below the minimum 4:1 ratio but to safely respect the reference intake, the consumption of
a DHA supplement is suggested (250 mg/d).

Currently, a widely accepted method to track PUFAs’ intake sufficiency is lacking. A
commonly used marker is the Omega-3 index, which is thought to predict dietetic intakes
of omega-3 polyunsaturated fatty acids through EPA and DHA quantification in red blood
cell membranes [106]. This biomarker has been proposed to identify high-risk patients
for cardiovascular disease and other neurocognitive illnesses [106,107]. Future research is
needed to validate the reliability of the VP_LF diet and confirm the adequacy of dietary
essential fatty acids, given their crucial role in chronic diseases.

The VP_LF guide includes only plant proteins, whose proposed amounts respect the
Italian and US reference intakes [23,24]. Due to their lower digestibility and peculiar amino
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acid composition in plant foods, dietary protein adequacy in plant-based diets has long been
debated [108,109] but has been approved by leading experts in the field [1,2,108,110,111].
Despite it being reported that vegetarian diets typically contain adequate amounts of
protein, including adequate amounts of all 20 amino acids and, specifically, all the essential
amino acids [111], adjustments for the bioavailability of protein with a 10–15% increase
in intake have been applied [2,19,105]. Plant proteins are associated with healthy aging, a
reduction in the risk of frailty in elderly individuals, and lower mortality [112–114], and
their consumption can reduce the risk of obesity and other chronic diseases [115–117].
Moreover, plant protein can favorably influence gut health by regulating the microbiota
composition, promoting a diverse and healthy population of gut bacteria [118]. VP_LF also
addresses the modernization of the concept of “protein quality” from the perspective of
planetary health [115], which favors plant protein since the protein conversion rate from
plants to animals ranges from 20:1 to 4:1 (with an average of 9:1) [119].

The limitation of % total energy from fats to 10–15% results in the intake of more
nutrient-dense calories, i.e., richer in macro and micronutrients, in comparison to diets
that do not limit fats. Practically, limiting fats allows the intake of higher amounts of
nutrients (different from fats) with the same calorie intake. Accordingly, the contents of
all micronutrients, except for vitamin B12 and vitamin D, which are classified as critical
nutrients in all plant-based diets, are shown in Table 4.

Vitamins B12 and D are placed at the center of the plate to emphasize their fundamental
presence in a well-planned diet. Vitamin B12 (cobalamin) is a unique vitamin because it
is synthesized by bacteria located in the environment and digestive systems of animals
and is almost completely absent in plant foods unless not fortified. An adequate intake of
4 mcg/d has been proposed for adults [23,120], which is impossible to achieve with a plant-
based diet since animal foods are the only source of this vitamin. Nevertheless, cobalamin
malabsorption is a cross-sectional problem for all kinds of diets and can also compromise
B12 status in people consuming animal foods [121,122]. Therefore, although cobalamin
deficiency is common worldwide, it is well recognized that vegetarians, especially in the
general population following plant-based diets, should supplement it. This issue is even
more relevant in the elderly population, where the risk of B12 deficiency exists regardless of
their overall dietary pattern [1,2,19,123]. If the latitude is favorable, vitamin D is produced
in the skin by sunlight and then further processed in the liver and the kidney to obtain
its active form. It is contained in fatty animal foods, so vegetarians are considered at-risk
and are advised to pay attention to vitamin D status [19,123]. Nevertheless, it has been
reported that vitamin D status is influenced mostly by supplementation, the degree of skin
pigmentation, and the amount and intensity of sun exposure rather than by diet [124], so
vitamin D deficiency appears to be a cross-sectional situation and has been compared to a
pandemic [125].

In the VegPlate method, the group of foods rich in calcium has been conceived as a
cross-sectional group, and Table 4 shows that calcium needs are satisfied with a varied
choice of plant foods. In any case, the knowledge of calcium-rich plant foods can help
nutrition professionals plan a diet that respects calcium requests. This problem is really
only applicable to very-low-calorie intakes, but in this situation, it should be remembered
that mineral water can provide highly absorbable calcium in moderate amounts, with no
energy [2].

Finally, in his review, Storz reported that adherence to a low-fat vegan diet in type-2
diabetic subjects was greater than adherence to conventional diets in several studies since
more than 50% of individuals met the criteria for high adherence in most studies, suggesting
that physicians should advocate for this diet more frequently [126].

In summary, the theoretical composition calculated on ideal intakes, together with
particular attention to the intake of critical nutrients, show that in the VP_LF, nutrition
adequacy is achieved.
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5. Conclusions

The benefits of a low-fat diet combined with a vegan plan have been explored in
clinical trials. This promising approach appears to be beneficial to health, is consistent with
the planetary goals of reducing the environmental impact of diets, and, with good and
regular support, shows solid adherence rates to low-fat vegan diets. Nevertheless, to date,
no food guide for planning low-fat vegan diets is available to health professionals. The
VegPlate_Low-Fat (VP_LF) aims to present a new proposal for an easy-to-use vegetarian
food guide for the planning of low-fat vegan diets to be used by health professionals in
their daily activities. Despite that further research to confirm and eventually enhance the
application of low-fat vegan diets in clinical practice is warranted, we hope that this new
proposal can represent a useful tool for nutrition professionals and can be considered a
complementary first-line, inexpensive approach to cardiometabolic diseases. We expect
that further intervention studies performed with real diets based on the VP_LF method
can confirm its effectiveness for combining nutrition adequacy and therapeutic advantages.
It would also be useful to compare their effectiveness with that of omnivorous diets with
similar amounts of fats.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13244050/s1, Table S1: Number of servings suggested for
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