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Abstract: Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological
studies indicate that diets rich in fruit, such as berries, provide significant health benefits against
several types of cancer, including colon cancer. The anticancer activities of berries are attributed
to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and
in vivo studies have demonstrated that berries and their bioactive components exert therapeutic
and preventive effects against colon cancer by the suppression of inflammation, oxidative stress,
proliferation and angiogenesis, through the modulation of multiple signaling pathways such as
NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes
of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human
studies have shown that consumption of berries can prevent colorectal cancer, especially in patients
at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this
review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer
from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful
step towards the next phase of berry research in colon cancer.
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1. Introduction

In the United States colon cancer is the second most prevalent cause of death from cancer in men
and women after lung cancer; in 2014, an estimated 96,830 new cases of colon cancer and 50,310 patient
deaths were reported [1]. In Europe, colorectal cancer (CRC) is the second most common cancer, with
almost 500,000 new cases diagnosed in 2012 [2], while over 1 million new cases are diagnosed each
year worldwide [3].

Multiple factors are associated with the development of CRC, including high alcohol consumption
(60% greater risk) [4], high-fat diet poor in fiber, red meat, obesity, smoking (20% associated with
CRC), lack of physical exercise [5], diabetes [6], older age [7], inflammatory bowel disease (ulcerative
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colitis and Crohn’s disease) [8], family history (20% cases of CRC) [9] and some genetic syndromes
[hereditary nonpolyposis colorectal cancer and familial adenomatous polyposis (FAP)] [10].

Several genetic and epigenetic alterations may increase the incidence of sporadic colon cancer
through distinct molecular mechanisms. Microsatellite instability, chromosomal instability, and
CpG island methylator phenotype are the main pathways in CRC pathogenesis [11]. Mutations
in adenomatous polyposis coli (APC) gene can lead to the activation of the wingless-type (Wnt)
pathway, a common mechanism for initiating polyp to cancer progression sequence [12]. p53 is a tumor
suppressor (transcriptional factor) that controls cell cycle, apoptosis and DNA repair mechanisms.
Mutation of this gene is one of the familiar genetic changes in the development of CRC [13]. In addition,
mutations of oncogenes, Kirsten rat sarcoma virus oncogene homolog or B-raf proto-oncogene, occur in
approximately 55% to 60% of CRCs, aberrantly activating the mitogen-activated protein kinase (MAPK)
signaling pathway [14,15]. In CRC, epidermal growth factor receptor is also expressed in 60% to 80% of
cases [16], and has been associated with multiple signaling pathways such as RAS-RAF-MEK-MAPKs
and PI3K/Akt [17]. Mutations in the transforming growth factor β (TGF-β) signaling pathway may
also be involved in the progression of cancer. Mutations in type II TGF-β receptor gene occur in around
30% of CRCs [18–20]. Furthermore, an aberrant nuclear factor-kappa B (NF-κB) activation has been
detected in more than 50% of colorectal and colitis-associated tumors [21].

Colorectal cancer prevention usually depends on screening methods, including stool tests,
radiographic imaging and colonoscopy to identify adenomatous polyps, a precursor lesion for
colon cancer. Treatments used for colorectal cancer may include some combination of surgery,
radiation therapy, chemotherapy and targeted therapy. In spite of the advances in colon cancer
treatment, including postoperative care, recurrence and mortality rates remain high; hence the
urgent need to complement the current therapies. Depending on the cancer stage and patient’s
features, several chemotherapy drugs and regimens for CRC management are proposed. The use of
various 5-fluorouracil (5-FU) based chemotherapeutics as neoadjuvants such as FOLFOX and FOLFIRI,
along with bevacizumab, panitumumab, or cetuximab, depends on the individual patient and tumor
characteristics [22].

Besides the limitations of current cancer management (surgery, chemotherapy and radiotherapy),
available cytotoxic drugs are not easily affordable or available in certain places (especially in developing
countries), and their use is also associated with a number of undesirable side and adverse effects [23].
As a consequence, a large proportion of the population prefers to patronize complementary and
alternative medicine (CAM) [24]. Despite its own limitations, CAM has a number of advantages
(such as affordability, availability and lower side effects) compared to synthetic or standard drugs [25].
The use of various natural and synthetic drugs for CRC prevention has indeed attained remarkable
attention in recent years, [26]; in this context, fruit and vegetables including soft fruits such as berries
may represent a valid alternative, because of their chemopreventive or chemotherapeutic properties
against certain diseases, such as cancer [27]. It is known that 10%–70% of all cancers is correlated
with diet and about 90% of colorectal cancer may be preventable through alterations of diet [28], since
dietary deficiencies may alter sensitivity to genetic damage and influence carcinogen metabolism
contributing to colon cancer development [29].

Berries are a common functional fruit worldwide and are among the richest fruits in
natural compounds, including minerals, vitamins, dietary fibers, and especially polyphenolic
phytochemicals [30–32]. In recent decades, polyphenolic compounds of berries have attracted
substantial attention and have been subjected to extensive research due to their antioxidant
properties, potential in health promotion and disease prevention, thus improving safety and consumer
acceptability [33–36]. Therefore, in this review we highlight the latest developments on the preventive
and therapeutic activities of berries and their bioactive compounds from in vitro and in vivo studies on
animal and humans, against colon cancer. Particularly, we discuss their molecular activities, such as:
(i) protection of cells from oxidative damage; (ii) suppression of inflammation; (iii) inhibition of cell
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proliferation by regulation of cell cycle and induction of apoptosis; (iv) protection and reconstruction
of DNA damage, as well as (v) inhibition of angiogenesis (Figure 1).Molecules 2016, 21, 169 3 of 38 

 
Figure 1. Berries exhibit chemopreventive and therapeutic response against colon cancer by targeting 
on cellular functions and signal transduction pathways associated with anti-inflammatory, antioxidative, 
antiproliferative, cell cycle regulation, apoptotic, antiangiogenesis and anti-metastasis mechanism. 

2. Bioactive Compound Profile and Antioxidant Capacity of Berries 

The interesting profile of berries has been reported by non-nutritive, nutritive and phytochemical 
assessments. Extraction (water, methanol, ethanol, chloroform, hexane, ethyl acetate and acetone) 
and structural elucidation (HPLC, nuclear magnetic resonance and mass spectrometry) have 
identified many components and their relevant abundance. Berries are rich in various bioactive 
compounds including phenolic acids, benzoic acid (hydroxybenzoic) and derivatives of cinnamic 
acid (hydroxycinnamic acids) [37], stilbenes (resveratrol) [38], lignans (secoisolariciresinol) [39], 
flavonoids including anthocyanins (cyanidin, pelargonidin, delphinidin, peonidin, malvidin) [40], 
flavonols (quercetin, myricetin, kaempferol) and flavanols (catechins) [41], condensed tannins 
(proanthocyanidins) [42] and hydrolyzable tannins (ellagitannins and gallotannins) [43], vitamins 
(vitamins A, C, E) [44,45], folate [46], alkaloids (berberine, berbamine and palmatine) [47], carotenoids 
[48], xanthones (α-mangostin, β-mangostin, γ-mangostin, and methoxy-β-mangostin) [49] and 
polysaccharide [50]. Major bioactive compounds found in different berries are presented in Table 1. 

Diversity of berry phenolics is observed in several ways, including: (i) genetic and environmental 
factors, such as species and variety, cultivation methods, fertilization, weather, ripeness and 
harvesting season, conditions and time of storage [51–57]; (ii) chemical structures, ranging from 
simple single-aromatic ring compounds to large complex molecules built up from multiple smaller 
ones [58]; (iii) degree of oxidation and substitution patterns of hydroxylation; (iv) abilities to exist as 
stereoisomers; (v) glycosylation by sugar moieties and other substituents; and (vi) conjugation to 
form polymeric molecules [59]. 
 

Figure 1. Berries exhibit chemopreventive and therapeutic response against colon cancer by targeting on
cellular functions and signal transduction pathways associated with anti-inflammatory, antioxidative,
antiproliferative, cell cycle regulation, apoptotic, antiangiogenesis and anti-metastasis mechanism.

2. Bioactive Compound Profile and Antioxidant Capacity of Berries

The interesting profile of berries has been reported by non-nutritive, nutritive and phytochemical
assessments. Extraction (water, methanol, ethanol, chloroform, hexane, ethyl acetate and acetone)
and structural elucidation (HPLC, nuclear magnetic resonance and mass spectrometry) have
identified many components and their relevant abundance. Berries are rich in various bioactive
compounds including phenolic acids, benzoic acid (hydroxybenzoic) and derivatives of cinnamic
acid (hydroxycinnamic acids) [37], stilbenes (resveratrol) [38], lignans (secoisolariciresinol) [39],
flavonoids including anthocyanins (cyanidin, pelargonidin, delphinidin, peonidin, malvidin) [40],
flavonols (quercetin, myricetin, kaempferol) and flavanols (catechins) [41], condensed tannins
(proanthocyanidins) [42] and hydrolyzable tannins (ellagitannins and gallotannins) [43], vitamins
(vitamins A, C, E) [44,45], folate [46], alkaloids (berberine, berbamine and palmatine) [47],
carotenoids [48], xanthones (α-mangostin, β-mangostin, γ-mangostin, and methoxy-β-mangostin) [49]
and polysaccharide [50]. Major bioactive compounds found in different berries are presented in Table 1.

Diversity of berry phenolics is observed in several ways, including: (i) genetic and environmental
factors, such as species and variety, cultivation methods, fertilization, weather, ripeness and
harvesting season, conditions and time of storage [51–57]; (ii) chemical structures, ranging from
simple single-aromatic ring compounds to large complex molecules built up from multiple smaller
ones [58]; (iii) degree of oxidation and substitution patterns of hydroxylation; (iv) abilities to exist as
stereoisomers; (v) glycosylation by sugar moieties and other substituents; and (vi) conjugation to form
polymeric molecules [59].
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Table 1. Major bioactive compounds present in different berries.

Berries
Major Bioactive Compounds

Flavonoids Phenolic Acids Tannins Vitamins Stilbenes Other Compounds References
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Raspberry  

 

Anthocyanins (Cyanidin glycosides, 
cyaniding-3-arabinose, 
cyanidin-3-soporoside, 
Cyanidin-3-rutinoside, and 
pelargonidin glycosides), quercitin, 
catechin, epicatechin, apigenin, 
chrysin and naringenin 

Caffeic acid,  
ferulic acid,  
gallic acid, 
chlorogenic acid,  
p-coumaric acid and 
p-hydroxybenzoic acid 

Ellagitannin  
and ellagic acid 

Folate, 
Vitamin C 
and B 

Resveratrol 

Polyunsaturated fatty 
acids, calcium, 
potassium, magnesium, 
phosphorus, lutein,  
α and β carotene 

[60,61] 

Blueberry  

 

Anthocyanins (malvidin glycosides, 
cyanidin glycosides, delphinidin 
glycosides and petunidin 
glycosides), myricetin glycosides, 
quercetin glycosides, kaempferol, 
(+)-catechin and (−)-epicatechin 

Benzoic and cinnamic 
acids 

Proanthocyanidins 

Vitamin C, B 
complex, E, A 
and ascorbic 
acid 

Pterostilbene 
Potassium, calcium, 
magnesium, phosphorus, 
β-carotene and lutein 

[62,63] 

Grape 

 

Anthocyanins 
(malvidin-3-glucoside, 
peonidin-3-glucoside, 
cyanidin-3-glucoside and 
petunidin-3-glucoside), quercetin, 
kaempferol, (+)-catechin, 
epicatechin and epicatechin gallate 

Hydroxycinnamic 
acid, gallic acid, 
caffeic acid, coumaric 
acid and ferulic acid 

Proanthocyanidins 
and ellagic acid 

Vitamin C 
and K 

Resveratrol, 
pterostilbene, 
piceid, 
viniferins, 
astringin and 
piceatannol 

Copper, carotenoids  
(β-carotene and lutein), 
and melatonin 

[64,65] 

Strawberry Anthocyanins 
(cyanidin-3-glucoside, pelargonidin 
and pelargonidin-3-rutinoside), 
quercetin glycosides, kaempferol 
glycosides and flavan-3-ols 
((+)-catechin) 

Hydroxycinnamic 
acids, gallic acid, 
caffeic acid, 
p-coumaric acid and 
coumaroyl glycosides 

Proanthocyanidins, 
ellagitannins, 
gallotannins, 
ellagic acid and its 
glycosides. 

Folate and 
Vitamin C 

Resveratrol 
Potassium, calcium, 
magnesium and 
phosphorus 

[66,67] 

Cranberry 

 

Anthocyanins(cyanidin glycosides, 
peonidin glycosides, pelargonidin 
glycosides, malvidin glycosides, 
delphinidin glycosides) kaempferol 
and quercetin 

p-Coumaric acid and 
hydroxycinnamic 
acid 

Proanthocyanidins 
Folate, 
Vitamin C 
and A 

Resveratrol 
Calcium, iron, potassium, 
magnesium and 
mamganese 

[61,68] 

Bilberry 
Anthocyanin 
(cyanidin-3-galactoside, 
cyanidin-3-glucoside and 
cyanidin-3-arabinoside) , quercetin 

Chlorogenic acid, 
Caffeic acid 
derivative 

Proanthocyanidins 
Ascorbic 
acid 

Resveratrol 
Carotenoids,  
sterols and lipids 

[69,70] 

Anthocyanins (Cyanidin glycosides,
cyaniding-3-arabinose,
cyanidin-3-soporoside,
Cyanidin-3-rutinoside, and
pelargonidin glycosides), quercitin,
catechin, epicatechin, apigenin,
chrysin and naringenin

Caffeic acid,
ferulic acid,
gallic acid,
chlorogenic acid,
p-coumaric acid and
p-hydroxybenzoic acid

Ellagitannin and
ellagic acid

Folate,
Vitamin C and
B

Resveratrol

Polyunsaturated fatty
acids, calcium,
potassium, magnesium,
phosphorus, lutein,
α and β carotene

[60,61]
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Resveratrol 
Carotenoids,  
sterols and lipids 

[69,70] 

Anthocyanins
(cyanidin-3-glucoside, pelargonidin
and pelargonidin-3-rutinoside),
quercetin glycosides, kaempferol
glycosides and flavan-3-ols
((+)-catechin)

Hydroxycinnamic acids,
gallic acid, caffeic acid,
p-coumaric acid and
coumaroyl glycosides

Proanthocyanidins,
ellagitannins,
gallotannins,
ellagic acid and its
glycosides.

Folate and
Vitamin C Resveratrol

Potassium, calcium,
magnesium and
phosphorus

[66,67]
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[60,61] 
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Anthocyanins (malvidin glycosides, 
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glycosides), myricetin glycosides, 
quercetin glycosides, kaempferol, 
(+)-catechin and (−)-epicatechin 

Benzoic and cinnamic 
acids 

Proanthocyanidins 

Vitamin C, B 
complex, E, A 
and ascorbic 
acid 

Pterostilbene 
Potassium, calcium, 
magnesium, phosphorus, 
β-carotene and lutein 

[62,63] 

Grape 

 

Anthocyanins 
(malvidin-3-glucoside, 
peonidin-3-glucoside, 
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petunidin-3-glucoside), quercetin, 
kaempferol, (+)-catechin, 
epicatechin and epicatechin gallate 

Hydroxycinnamic 
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and ellagic acid 

Vitamin C 
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viniferins, 
astringin and 
piceatannol 

Copper, carotenoids  
(β-carotene and lutein), 
and melatonin 
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ellagitannins, 
gallotannins, 
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Folate and 
Vitamin C 

Resveratrol 
Potassium, calcium, 
magnesium and 
phosphorus 

[66,67] 

Cranberry 

 

Anthocyanins(cyanidin glycosides, 
peonidin glycosides, pelargonidin 
glycosides, malvidin glycosides, 
delphinidin glycosides) kaempferol 
and quercetin 

p-Coumaric acid and 
hydroxycinnamic 
acid 

Proanthocyanidins 
Folate, 
Vitamin C 
and A 

Resveratrol 
Calcium, iron, potassium, 
magnesium and 
mamganese 

[61,68] 
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(cyanidin-3-galactoside, 
cyanidin-3-glucoside and 
cyanidin-3-arabinoside) , quercetin 

Chlorogenic acid, 
Caffeic acid 
derivative 

Proanthocyanidins 
Ascorbic 
acid 
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Carotenoids,  
sterols and lipids 

[69,70] 
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peonidin glycosides, pelargonidin
glycosides, malvidin glycosides,
delphinidin glycosides) kaempferol
and quercetin

p-Coumaric acid and
hydroxycinnamic acid Proanthocyanidins

Folate,
Vitamin C
and A

Resveratrol
Calcium, iron,
potassium, magnesium
and mamganese

[61,68]
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Mangosteen 

 

 
p-Hydroxybenzoic acid, 
m-hydroxybenzoic and 
3,4-dihydroxy-mandelic 

Proanthocyanidins Folate  

α-Mangostin,  
β-Mangostin, µ-Mangostin, 
1,3,6,7-Tetrahydroxy 
Xanthone, 1-Isomangostin, 
Mangosharin, calcium, 
potassiuum and magnesium 

[71–73,74] 

Blackberry 

Anthocyanins (cyanidin glycosides, 
pelargonidin glycosides, peonidin 
glycosides), quercitin, cyaniding 
and epicatechin 

Gentisic acid, 
protocatchiuic acid, 
salicylic acid and 
caffeic acid 

Ellagitannins and 
ellagic acid 

Folate and 
Vitamin C 
(ascorbic 
acid) 

 β-carotene, cryptoxanthin 
and lutein 

[60] 

Blackcurrent 
Anthocyans 
(delphinidin-3-O-glucoside, 
delphinidin-3-O-rutinoside, 
cyanidin-3-O-glucoside and 
cyanidin-3-O-rutinoside), catechins, 
quercetin, myricetin and kaempferol 

Gallic acid, 
p-hydroxy-benzoic 
acid and 
hydroxycinnamic acid 

Proanthocyanidin,
ellagitannins and 
gallotannins 

Vitamin A 
and B2 

Stilbenoids 
Calcium, zinc, magnesium, 
potassium, gibberellic acids 
and γ-linolenic acid 

[75] 

Chokeberry 
Anthocyans (cyanidin-3-galactoside 
and cyanidin-3-arabinoside, 
cyanidin-3-galactoside and 
cyanidin-3-arabinoside), quercetin 
glycosides and flavan-3-ols 
((−)-epicatechin) 

Caffeic acid, 
hydroxycinnamic 
acids, chlorogenic acid 
and neochlorogenic 
acids 

Proanthocyanidins 
Vitamin B 
and C 

Stilbenes 
Potassium and zinc,  
β-carotene and  
β-cryptoxanthin 

[33,76,77] 

Cloudberry 

Anthocyanins, flavonols and 
flavan-3-ols 

p-Coumaric acid, 
hydroxycinnamic 
acids, caffeic acid, 
ferulic acid and  
gallic acid 

Poanthocyanidins, 
ellagitannins and 
ellagic acid 

Vitamin C 
and 
α-tocopherol 

Stilbenes β-carotene [78–80] 

  

p-Hydroxybenzoic acid,
m-hydroxybenzoic and
3,4-dihydroxy-mandelic

Proanthocyanidins Folate

α-Mangostin,
β-Mangostin, µ-Mangostin,
1,3,6,7-Tetrahydroxy
Xanthone, 1-Isomangostin,
Mangosharin, calcium,
potassiuum and magnesium

[71–74]
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[33,76,77] 

Cloudberry 

Anthocyanins, flavonols and 
flavan-3-ols 

p-Coumaric acid, 
hydroxycinnamic 
acids, caffeic acid, 
ferulic acid and  
gallic acid 

Poanthocyanidins, 
ellagitannins and 
ellagic acid 

Vitamin C 
and 
α-tocopherol 

Stilbenes β-carotene [78–80] 

  

Anthocyanins (cyanidin glycosides,
pelargonidin glycosides, peonidin
glycosides), quercitin, cyaniding
and epicatechin

Gentisic acid,
protocatchiuic acid,
salicylic acid and
caffeic acid

Ellagitannins and
ellagic acid

Folate and
Vitamin C
(ascorbic acid)

β-carotene, cryptoxanthin
and lutein [60]
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Anthocyans
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cyanidin-3-O-glucoside and
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[33,76,77]
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Cloudberry 
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Anthocyanins, flavonols and
flavan-3-ols

p-Coumaric acid,
hydroxycinnamic acids,
caffeic acid, ferulic acid
and gallic acid

Poanthocyanidins,
ellagitannins and
ellagic acid

Vitamin C and
α-tocopherol Stilbenes β-carotene [78–80]
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Sebuckthron 

 

Isorhamnetin 
(isorhamnetin-rutinoside, 
isorhamnetin-glycosid) 
quercetin-rutinoside, 
quercetin-glycoside and kaempferol 

Hydroxyursolic acid  
Vitamin A, 
B2, C and E 

 
Carotenoid, calcium, 
magnesium, potassium  
and sodium 

[81,82] 

Lingonberry Anthocyanins 
(cyanidin-3-O-sambubioside, 
delphinidin-3-O-galactoside, 
peonidin-3-O-galactoside), 
quercetin-3-galactoside and 
flavan-3-ols ((−)-epicatechin) 

Ferulic acid, benzoic 
acid and phenylacetic 
acid 

Proanthocyanidins 
Vitamin C 
and E 

Trans-resver
atrol 

 [83–85] 

Barberry 

Chrysanthemin, hyperoside, 
pelargonin and 
petunidin-3-O-beta-D-glucoside 

Chlorogenic acid Tannin 
Ascorbic 
acid and 
Vitamin K 

 
Isoquinoline alkaloids 
(berberine, berbamine and 
palmatine), and β-carotene 

[86] 

Acaiberry 
Anthocyanins (cyanidin, 
delphinidin, malvidin, pelargonidin, 
and peonidin), isovitexin ,luteolin, 
quercetin, dihydrokaempferol, 
chrysoerial and flavan-3-ols 

Protocatechuic acid, 
ferulic acid, syringic 
acid and vanillic acid 

  Resveratrol  [87] 

Gogiberry 

Myricetin, quercetin and kaempferol p-Coumaric acid  
Vitamin B1, 
B2, B3, B6, C 
and E 

 

L. barbarum polysaccharides, 
amino acids, zinc, iron, 
copper, calcium, 
germanium, selenium, 
phosphorus and β-carotene 

[88] 

Silverberry 

Myricetin and  
epigallocatechin gallate 

Phenolcarboxylic 
acids, benzoic acid, 
cinnamic acid and 
caffeic acid 

Condensed tannins 
Ascorbic 
acid 

 
Lycopene, linoleic acid, oleic 
acid, and stearic acid 

[89] 

  

Isorhamnetin
(isorhamnetin-rutinoside,
isorhamnetin-glycosid)
quercetin-rutinoside,
quercetin-glycoside and kaempferol

Hydroxyursolic acid Vitamin A, B2,
C and E

Carotenoid, calcium,
magnesium, potassium
and sodium

[81,82]
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Condensed tannins 
Ascorbic 
acid 

 
Lycopene, linoleic acid, oleic 
acid, and stearic acid 

[89] 

  

Anthocyanins
(cyanidin-3-O-sambubioside,
delphinidin-3-O-galactoside,
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acids 
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derivatives 
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Elderberry 
Anthocyanins  
(cyanidin 3,5-diglucoside and 
cyanidin 3-glucoside) 

Chlorogenic acid  Vitamin C  Lectins [91] 

Jamunberry Anthocyanins  
(3,5-diglucosides of delphinidin, 
petunidin and malvidin), 
dihydroquercetin diglucoside, 
myricetin 

Gallic acid and 
galloyl-glucose ester 

   Carotenoids and lutein [92] 

Rosehip 
Quercetin, kaempferol and 
myricetin 

Gallic acid, 
protocatechuic acid, 
syringic acid, coumaric 
acid and vanillic acid 

Ellagic acid Vitamin C  
Ascorbate, β-carotene, 
glutathione and  
α-tocopherol 

[93] 

Emblic 

Quercetin 
Gallic acid, chebulagic 
acid, 3-ethyl-gallic 
acid and geraniin 

Ellagic acid, 
corilagin, and 
isocorilagin 

Vitamin C  
Galloyl glucose, amino acids 
and minerals 

[94,95] 

(+)-catechin, and quercetin aglycon

Hydroxybenzoic acid
derivative and
hydroxycinnamic acid
derivatives

Proanthocyanidins [90]
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A growing amount of evidence indicates that berries contain a wide range of antioxidants
(Table 2) [96,97], responsible, at least in part, for their chemopreventive activities. The mechanism of
antioxidant activity of berries involvesi) scavenging or quenching of oxygen free radicals; (ii) protection
of DNA, proteins, and lipids from reactive oxygen species (ROS); (iii) inhibition of oxidative
enzymes [98]; (iv) inhibition of oncogene expression [99,100] and (v) alteration of cellular signaling to
regulate the level of antioxidant compounds and enzymes [33].

Table 2. Antioxidant capacity, measured as oxygen radical absorbing capacity (ORAC) (µmol Trolox
equivalents/g), of various fresh berries.

Berries Antioxidant Capacity
(µmol Trolox Equivalents/g) References

Chokeberry 158.2 [101,102]
Raspberry 21.4 [103]

Lowbush blueberry 64.4 [103]
Elderberry 145.0 [102]
Blackberry 55.7 [104]

Rabbiteye blueberry 123.4 [104]
Black currant 56.7 [104]
Lingonberry 38.1 [101]
Cranberry 18.5 [101]
Red grape 7.4 [105]

White grape 4.5 [105]
Strawberry 53.03 [106]
Jamunberry 16.4 [92]

Emblic 134.33 [95]

3. Bioavailability and Metabolites of Berries

It is well established from animal [107–109] and human studies [110–112] that phenolic
compounds of ingested berry phytochemicals survive digestion in the upper digestive tract and
reach different parts of the proximal and distal colon in substantial doses (Figure 2). During the
absorption process, phenolics are conjugated (usually methylated, sulfated and glucuronidated) in
the small intestine and later in the liver, a metabolic detoxification process that facilitates biliary and
urinary elimination [113]. Hence, the colonic epithelia can be in contact with both the parent phenolic
compounds and their degradation products which are extensively metabolized to simpler phenolics
by colonic microbiota [114–116]. A few of these metabolites can be detected in urine, feces, blood and
tissue, though some phenolic compounds often have very poor bioavailability (Figure 2) [117].

The bioavailability of anthocyanins is very low and only trace levels can be detected in plasma
and urine after absorption and excretion. Potential phase I and phase II metabolism appears to be very
difficult to evaluate. Anthocyanin metabolites such as cyanidin-3-galactoside, cyanidin-3-glycosides,
cyanidin 3-rutinoside, cyanidin glucuronide and glucuronide conjugates, delphinidin 3-glucoside,
delphinidin 3-rutinoside, pelargonidin-3-glucoside and malvidin-3-glucoside were detected in urine
and serum samples of volunteers who consumed berry extract or juice [111,112,118–120].

There are numerous feeding studies with animals and human subjects indicating that
polymeric procyanidins are not absorbed [121]. Most of them pass unaltered to the large intestine
where they are catabolized by the colonic microflora yielding a diversity of phenolic acids
including 3-(3-hydroxyphenyl) propionic acid, 4-O-methylgallic acid, m-hydroxyphenylacetic acid,
m-hydroxyphenylvaleric acid and m-hydroxybenzoic acid which are absorbed into the circulatory
system and excreted in urine [122,123].

Dietary ellagitannins (ET) are hydrolyzed to yield ellagic acid (EA). Later, EA is metabolized by
colon bacteria to various urolithins, such as urolithin A (3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one:
UA) and B (3-hydroxy-6H-dibenzo[b,d]pyran-6-one: UB), in the distal part of the small intestine
and in the colon [124]. Once absorbed, these microbial metabolites are further subjected to phase II
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biotransformations in the enterocyte and hepatocyte, producing a combination of urolithin metabolites
both in plasma and urine [125].

Furthermore, dietary antioxidants, like vitamin C and E, together with a few carotenoids
are absorbed in the upper segments of the intestine [126]. In this perspective, the individual’s
gut microbiota will become increasingly relevant in studies on colon cancer with respect to the
individual’s bioavailability and ultimately bioactivity of berry polyphenol, metabolizing phenotype or
gut metabotype [127,128].
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4. Biological Activities of Berries against Colon Cancer: in Vitro and in Vivo Animal Studies

A growing body of evidence has been focused on determining the conceivable mechanisms for
colon cancer prevention. Different in vitro and in vivo models have assessed the efficacy of whole
berry extracts, fractionated berry extracts, or purified/commercial berries on different stages of colon
cancer (Table 3).

4.1. Raspberry

The raspberry (Rubus sp., family: Rosaceae), a traditional medical plant, has recently received
much attention from both scientists and consumers for its health benefits, due mainly to the high
amount of ellagic acid which is a known anticancer agent [129].

Regarding in vitro studies, treatment with black raspberry derived anthocyanins suppressed cell
proliferation and increased apoptosis in colon cancer HCT-116, Caco-2 and SW480 cells [130]. This
effect was partly mediated by mRNA regulation of β-catenin and c-Myc genes [130]. Wang and
colleagues found that anthocyanins demethylated tumor suppressor genes such as CDKN2A, SFRP2,
SFRP5 and WIF1, through the inhibition of DNA methyl transferase 1 (DNMT1) and DNMT3B in colon
cancer cells [130]. A “colon-available” raspberry extract (CARE) was reported to inhibit the key stages
of colorectal cancer development [131].
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Table 3. Anticarcinogenic effects of berry extracts or constituents in vitro and/or in vivo models of colon cancer.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Raspberry

In vitro

Polyphenolic-rich extracts HT-29 and HCT-115 cells 0, 3.125, 6.25, 12.5, 25, 50 µg/mL for 24 h -Inhibit initiation, promotion and invasion. [131]

Anthocyanins rich extracts of
black raspberry HCT-116, Caco-2 and SW480 cells 0.5, 5, and 25 µg/mL for 3 days

-Inhibit proliferation.
-Suppress DNMT1 and DNMT3B proteins.
-Suppress downstream of Wnt pathway.
-Induce apoptosis.

[130]

ET and their derivatives from black
raspberry seeds HT-29 cells 5 to 30 µg/mL for 24 and 48 h

-Arrest cell cycle.
-Induce apoptosis by extrinsic and intrinsic
pathways.

[132]

Aqueous extracts of black raspberry HT-29 cells 0 to 400 µg/mL for 24 to 48 h -Inhibit cancer cell growth
-Induce apoptosis. [133]

Red raspberry extracts LoVo cells 5%, 7.5%, and 10% for 24 to 48 h -Reduce the survival of cells. [134]

Black raspberry extracts HT-29 and HCT-116 cells 25–200 µg/mL for 48 h -Induce cytotoxic effects. [59]

Gastrointestinal digestion and
colonic fermentation HT-29 and HT-115 cells 0–50 µg/mL gallic acid equivalents

(GAE) for 24 h.
-Exert anti-genotoxic, anti-mutagenic and
anti-invasive activity. [116]

Freeze-dried extracts from
black raspberry HT-29 cells 0.6 and 1.2 mg of extract/mL for 48 h -Retain their anticancer activity after digestion. [135]

In vivo

Lyophilized black raspberry AOM induced Fischer 344 rat 0%, 2.5%, 5%, or 10% (wt/wt) for 9 to 33
weeks

-Decrease the multiplicity of ACF, total tumors,
adenomas, and adenocarcinomas. [136]

Black raspberry extracts Interleukin-10 knock-out mouse 5% for 8 weeks -Decrease colonic ulceration. [137]

Freeze-dried black raspberry

Apc1638+/´mice and Muc2´/´mice 10% for 12 weeks -Lower tumor incidence and multiplicity. [138]

DSS induced male C57BL/6J mice 5%–10% for 7–14 days -Ameliorates ulcerative colitis.
-Suppresses inflammation. [139]

DSS induced male C57BL/6J mice 5% for 28 days -Suppresses colonic ulceration by correcting
promoter hypermethylation of suppressor genes. [140]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Blueberry

In vitro

Dried extracts and fractions HT-29 and Caco-2 cells 50–10,000 µg/mL for 48 h -Inhibit cancer cell proliferation.
-Induce apoptosis. [141]

Ethanol/water extracts HT-29 cells 0.025%–0.5% dry wt for 24 h -Exert antiproliferative activity. [142]

Anthocyanin-rich extracts
Caco-2 cells 0.1–100 nM for 1 h -Act as an intracellular antioxidant. [143]

DLD-1 and COLO205 cells 50–250 µg/mL for 24 h -Repress the proliferation.
-Induce apoptosis. [144]

Blueberry extracts HT-29 and HCT116 cells 25–200 µg/mL for 24 to 48 h -Inhibit cancer cell proliferation. [145]

IVD and colonic fermentation HT-29 or CRL-1790 cells 10, 25, 50, 75 or 100 µg/mL for 24 to 48 h -Alter antiproliferative and antioxidant
activity after digestion. [146]

Delphinidin HCT116 cells 30–240 mM for 48 h
-Inhibit cancer cell growth.
-Induce apoptosis.
-Arrest cell cycle.

[147]

Anthocyanin-enriched fractions HT-29 cells 50–150 µg/mL for 6 h -Induce apoptosis. [148]

Pterostilbene HT-29 cells 50 µM for 4 h -Suppresses cell growth.
-Suppresses inflammation. [149]

In vivo

Pterostilbene AOM induce Fisher 344 male 40 p.p.m. (0.004%) for 45 weeks -Reduce tumor multiplicity, by inhibiting the
Wnt/β-catenin signaling pathway. [149]

Blueberry extracts AOM induce Fisher 344 male 50 g/kg for 13 weeks -Reduce formation of AOM-induced ACF and
increase in hepatic GST activity. [150]

Blueberry husks and mixture of
three probiotic DSS treatment rat 50 g /kg diet for 6 months -Reduce colonic ulcers and dysplastic lesions. [151]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Grape

In vitro

Grape seed proanthocyanidin extract Caco-2 cells 10–100 µg/mL for 24 h
-Inhibits cancer cell proliferation.
-Reduces PI3k/PKB signaling pathway.
-Induces caspase-3 dependent apoptosis.

[152]

Anthocyanin-rich extracts

HT-29 cells 0 to 200 µg/mL for 48 h -Inhibit cell proliferation. [153]

HT-29 cells 10–75 µg of monomeric
anthocyanin/mL for 24–72 h -Induce anti-proliferative activity. [154]

HT-29 cells 500 µg/ml for 72 h -Protect DNA damaging properties of
topoisomerase poisons. [155]

Obacunone and obacunone glucoside
(OG) from seeds of marsh white grape SW480 cells 6.25, 12.5, 50, and 100 µM for 24, 48

and 72 h -Induce intrinsic pathway of apoptosis. [156]

Grape waste Caco-2 cells 0.5, 1.5, 10, 50, or 100 mL/L for 24 h
-Induce strong antiradical and
antiproliferative activity.
-Arrest cells cycle.

[157]

In vivo

Anthocyanin-rich extracts AOM treated Fischer 344 male rats 3.85 g of monomeric anthocyanin/kg
body weight for 14 weeks -Inhibit colonic aberrant crypt foci formation. [158]

Total pholyphenolic extracts DMH induced F344 rats 0.11 % (w/w) for 16 weeks -Decrease number of adenomas. [159]

Proanthocyanidin-rich dietary fiber C57BL/6J mice 10 mL/kg body weight for 2 weeks

-Alters the expression of tumor suppressor
genes and proto-oncogenes.
-Modulates genes associated with lipid
biosynthesis, energy metabolism, cell cycle,
and apoptosis.

[160]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Strawberry

In vitro

Crude extracts and
purified compounds HT-29 and HCT-116 cells 250 µg/mL (crude extract) and

100 µg/mL (pure compounds) for 48 h -Inhibit cell proliferation. [161]

Polyphenol-rich extracts Caco-2 cells 25, 50, and 75 µg of GAE /mL -Show anti neoplastic activity. [162]

Strawberry extracts
HT-29 cells 0.025%, 0.05%, 0.25%, 0.5% for 24 h -Organically grow strawberry extracts show

higher antiproliferative activity. [163]

HT-29 and HCT-116 cells 25–200 µg/mL for 24 to 72 h -Inhibit cancer cell proliferation. [145]

IVD and fecal fermentation HT-29 and HT-115 cells 0–50 µg/mL GAE for 24 h -Exerts anti-genotoxic, anti-mutagenic and
anti-invasive activity. [116]

Extracts from strawberries treated
with essential oils HT-29 cells 3 mg/mL for 24 h to 96 h -Exhibit strong radical scavenging capacity

and antiproliferative activity. [164]

Kaempferol HT-29 cells 0 or 60 µmol/L for 24 to 72 h -Inhibit cancer cells growth.
-Arrest cell cycle. [165]

ET extracts, EA and UA. Human 293T cells 10–1000 µg/mL for 48 h -Inhibit the canonical Wnt signaling pathway. [166]

In vivo

Freeze-dried strawberry AOM/DSS induced male Crj: CD-1 mice 2.5%, 5.0% or 10.0% for 20 weeks -Reduce proinflammatory mediators and
oncogenic signaling pathways. [167]

Bilberry

In vitro

Ethanol extracts HCT-116 cells 4 mg/mL for 24 or 48 h -Inhibit cancer cell proliferation. [168]

Anthocyanin-rich extracts

HT-29 cell 25–75 µg/mL (equivalents as cyanidin
3 glucoside) for 48 h -Inhibit cell proliferation [153]

HT-29 cells 0–60 mg/mL for 24 h -Inhibit cancer cell proliferation.
-Induce apoptosis. [168]

HT-29 cells 50–500 µg/mL for 72 h -Suppress the DNA-damaging properties. [155]

HT-29 cells 5–500 µg/mL for 1 to 24 h -Exhibit cytotoxicity.
-Decrease DNA damage and ROS level. [169]

Anthocyanin-rich extracts HT-29 and NCM460 cells 10–75 µg of monomeric
anthocyanin/mL for 24–72 h -Inhibit cancer cell proliferation. [154]

Anthocyanin-rich extracts Caco-2 cells 0.1–100 nM for 1 h -Exert potent intracellular antioxidant activity. [143]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Bilberry

In vivo

Anthocyanin-rich extracts AOM treated Fischer 344 male rats 3.85 g of monomeric anthocyanin/kg for
14 weeks -Decrease the number of total and large ACF. [158]

Mirtoselect and cyanidin-3-glucoside Apc Min/+ mouse 0.03%–0.3% for 12 weeks -Decrease the total numbers of intestine adenomas. [170]

Freeze-dried bilberry Apc Min/+ mouse 1564 mg/kg for 10 weeks -Inhibit the formation of intestinal adenoma. [171]

Cranberry

In vitro

Cranberry presscake and whole
cranberry extract HT-29 cells 0–600 mg/mL for 4 days -Exhibit antiproliferative activity. [172]

Cranberry extracts and
polyphenol fraction HCT-116, SW480 and SW620 cells 50–200 µg/mL (extract) and

6.5–78.8 µg/mL (fractions) for 48 h -Enhance antiproliferative activity. [173]

In vivo

Cranberry extracts and
dried cranberry DSS induced murine colitis 0.1% creanberry extract and 1.5% dry

cranberry for 1 week
-Prevent colitis.
-Decrease inflammatory cytokines. [174]

Cranberry products AOM induced Fisher 344 male 50 g/kg for 17 weeks -Inhibit colonic ACF formation. [150]

Fr6 and purified proanthocyanidin Xenografts Balb/c mice
100 mg/kg proanthocyanidin and
250 mg/kg Fr6 for every 2 days for
3 weeks

-Decrease tumor growth and volume. [175]

Juice of high-bush cranberry DMH treated mouse 65% gilaburu pulp and 45% water
(pH: 3.09) for 30 weeks -Inhibit tumor lesion at the initiation stage. [176]

Mangosteen

In vitro

α-Mangostin and other
xanthones extracts HCT-116 cells 2.5–30 µg/mL for 48 h -Induce cytotoxicity and apoptosis. [71]

α-Mangostin

HCT-116 cells 14.8–25.6 µM for 24 h -Inhibit proliferation.
-Induce apoptosis and arrest cell cycle. [177]

DLD-1 cells 0 to 20 µM for 24 h -Inhibit proliferation.
-Induce apoptosis. [178]

HT-29 cells 6–12 µM for 24 h -Exert anti-proliferative activity.
-Decrease Bcl-2 and β-catenin expresion. [179]

γ-Mangostin HT-29 cells 10–200 µM for 24 h -Inhibits cancer cell proliferation.
-Induces apoptosis and increases ROS. [180]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Mangosteen

In vivo

Extracts of mangosteen pericarp Established subcutaneous tumor of
HCT-116 cells in NCR nude mice 0.25% and 0.5% for 20 days -Inhibit tumor growth and fewer blood vessels

in tumor. [181]

α-Mangostin

HT-29 colon cell xenogrft Balb/c nu/nu
mice 900 mg /kg for 2 or 4 weeks -Decrease tumor masses and anti-apoptotic

protein, Bcl-2, and β-catenin. [179]

Her2/CT26 colon cell xenografts mice 20 mg/kg daily for 3 days -Reduce tumor growth by
autophagy activation. [182]

DMH induce Fisher 344 rats 0.02% and 0.05% for 5 weeks
-Inhibit development of ACF.
-Decreases dysplastic foci, β-catenin
accumulated crypts and lower PCNA.

[183]

Crude methanolic extract Mice were implanted with NL-17 cells 0–250 mg/kg for 14 days -Increase life span by decreasing tumor growth. [184]

Blackberry

In vitro

Blackberry extract HT-29 and HCT-116 cells 25–200 µg/mL for 24 to 48 h -Exert antiproliferative effects. [145]

Anthocyanin-rich extracts from hull
and crude blackberry HT-29 cells 13.6 to 49.2 µg of monomeric

anthocyanins/mL for 48 to 72 h
-Induce significant antioxidant and
antiproliferative activity. [185]

Anthocyanin-rich extracts from
crude blackberry Caco-2 cells 0.8, 1.6, 3.1, 6.3, 12.5 and 25 µg/mL

for 24 h -Inhibit peroxyl radical induced apoptosis. [186]

In vivo

Blackberry products AOM induced Fisher 344 male 50 g/kg for 17 weeks -Inhibit colonic ACF formation. [150]

Blackcurrant

In vitro

Black currant press residue extracts Caco-2, HT-29, and HCT-116 cells 0–125 µg GAE/mL for 24 to 48 h -Suppress cancer cell proliferation. [187]

Black currant extracts HT-29 cells 0.025% to 0.5% dry wt for 24 h -Exert antiproliferative effect. [142]

Methanol extracts of blackcurren HT-29 cells 0–60 mg/mL for 24 h -Diminish cell proliferation via the
p21WAF1 pathway. [168]

IVD digestion and fecal fermentation HT-29 and HT-115 cells 0–50 µg/mL GAE for 24 h -Exert anti-genotoxic, anti-mutagenic and
anti-invasive activity. [116]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Chokeberry

In vitro

In vitro gastric and pancreatic
digestion of chokeberry juice Caco-2 cells 0 to 800 µM for 2 h a day for

4 days period

-Inhibit cell proliferation.
-Arrest cell cycle at G2/M phase
-Upregulate tumor suppressor CEACAM1
gene expresion.

[125]

Anthocyanin-rich extracts

HT-29 cells 0 to 200 µg/mL for 48 h -Suppress cancer cell proliferation. [153]

HT-29 cells 10–75 µg of monomeric
anthocyanin/mL for 24–72 h -Inhibit cancer cell proliferation. [154]

HT-29 cells 50 µg monomeric anthocyanin/mL
for 24 h

-Inhibit cell proliferation.
-Block the cell cycle and increase cell cycle
regulatory protein.

[188]

In vivo

Anthocyanin-rich extracts AOM treated Fischer 344 male rats 3.85 g of monomeric anthocyanin/kg
for 14 weeks -Inhibit colonic ACF formation. [158]

Cloudberry

In vitro

Polyphenol-rich extracts Caco-2 cells 25, 50, and 75 µg of GAE/mL -Inhibit cancer cell proliferation. [162]

Methanolic extraction HT-29 cells 0–60 mg/mL for 24 to 48 h -Disrupt cell proliferation.
-Increases p21WAF1pathway. [168]

In vivo

Freeze dried cloubberry Apc Min/+ mouse 1564 mg/kg for 10 weeks -Inhibits the formation of intestinal adenoma. [171]

Seabuckthorn

In vitro

Polyphenol rich extracts HT-29 cells 0.025%–0.5% dry wt for 24 h -Inhibit cancer cell proliferation. [142]

Isorhamnetin HT-29, HCT-116 and SW480 cells 0–80 µmol/L for 3 days -Decreases cancer cell proliferation.
-Inhibits signaling pathway and arrests cell cycle. [189]

In vivo

Seabuckthorn seed oil PhIP exposure Wistar rats 2 to 8 mL/kg body wt for 12 to 36 h -Improves oxidative stress and decreases
abnormal cancer related gene expression. [190]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Lingonberry

In vitro

Polyphenol-rich extracts Caco-2 cells 25, 50, and 75 µg of GAE/mL -Induce antiproliferative activity. [162]

Anthocyanin-rich extract

HT-29 cells 0.025%–0.5% dry wt for 24 h -Suppress the growth of cancer cells. [142]

HT-29 cells 0–60 mg/mL for 24 to 48 h -Decrease cell proliferation proliferation via
p21WAF1pathway. [168]

In vivo

Freeze dried lingonberry Apc Min/+ mouse 1564 mg/kg for 10 weeks -Decrease adenoma formation. [171]

Barberry

In vitro

Berberine SW480 cells 5–50 µM for 12–72 h

-Suppresses cells growth.
-Arrests cell cycle.
-Induces apoptosis.
-Inhibits angiogenesis and inflammation markers.

[191]

Acai Berry

In vitro

Polyphenolic extracts SW480, HT-29 and CCD-18Co cells 5–20 mg/L for 48 h -Suppress cells growth.
-Show anti-inflammatory activity. [192]

In vivo

Spray-dried acai powder DMH in male Wistar rats 2.5% or 5.0% acai power for 20 weeks -Reduces the number of aberrant crypts,
invasive tumors and tumor multiplicity. [193]

Goji berry

In vitro

Lycium barbarum polysaccharides SW480 and Caco-2 cells 100–1000 mg/L for 1, 2, 3, 4,or 5 days -Decreases cells growth by intrupting cell cycle. [194]
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Table 3. Cont.

Berry Extracts/Fraction/Component Model (Cell Lines or Animal) Duration and Dose/Intervention Effects on Colon Cancer References

Silverberry

In vitro

Extracts from seed and flesh of
cherry silverberry HT-29 cells Seed extract (100–1600 g/mL) and flesh

extract (200–3200 g/mL) for 48 h
-Exert anti-inflammation and
anti-proliferation activities. [195]

White currant

In vivo

Freeze dried white currant Min mice 10% for 10 weeks -Prevents cancer initiation and progression. [196]

Arctic bramble

In vitro

Polyphenol-rich extracts Caco 2 cells 25, 50, and 75 µg of GAE/mL -Reduce cancer cell proliferation. [162]

Elderberry

In vitro

Anthocyanin-rich extracts HT-29 cells 0 to 200 µg/mL for 48 h -Inhibit cancer cell proliferation. [153]

Jamun berry

In vitro

ETs rich jamun berry extracts Human 293T cells 10–1000 µg/mL for 48 h -Exert chemopreventive activity.
-Inhibit the canonical Wntsignaling pathway. [166]

Rosehip

In vitro

Polyphenol rich extracts HT-29 cells
0.025,0.05, 0.25, and 0.5% dry wt for 24 h -Inhibit cancer cell proliferation. [142]
62.5–1000 g/L for 24 h -Suppress cancer cell growth. [93]

Emblic

In vitro

Ethanolic extracts HT-29 cells 10-100 µg/mL for 48 h -Inhibit cancer cell proliferation. [197]

Water extract COLO320 cells 0, 20, 40, 80, or 160 µg/mL PE for 24, 48,
72, or 96 h

-Suppress necrosis and delays
mitotic progression.
-Induce apoptosis.

[198]
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In fact, CARE was able to inhibit both initiation through protecting hydrogen peroxide induced
DNA damage, and promotion through decreasing cell population in the G1 phase inHT-29 cells;
moreover, in HT-115 colon cancer cells, it reduced the number of cells entering the cell cycle and
inhibited cell invasion [131]. Aqueous extract of Korean black raspberry was reported to constrain
HT-29 colon cancer cell growth by inducing apoptosis and inhibiting DNA synthesis [133]. This extract
induced cleavage of poly(ADP-ribose) polymerase (PARP) and increased the activity of caspase-3,
-7, and -9, suggesting that the induction of apoptosis was mediated by the activation of the caspase
pathway [133]. Similarly, in colon cancerHT-29 and HCT-116 cells, black raspberry extracts induced
cytotoxic effects, exerting significant pro-apoptotic effects of the cyclooxygenase-2 (COX-2) expressing
HT-29 cells [145]. Recently, Cho et al., investigated the chemopreventive activity of ET and their
derivatives from black raspberry seeds on HT-29 cells [132]. They found that ET, hydrolyzed to EA
and further metabolized to UA and UB, showed anti-cancer activity by: (i) inhibiting cell proliferation;
(ii) arresting the cell cycle at G1 and G2/M phase and (iii) inducing apoptosis by both extrinsic and
intrinsic apoptotic pathways [132]. Finally, it should be take into account that the antiproliferative
activity of black raspberry extracts on HT-29 cells is significantly influenced by cultivar, production
site, stage of maturity and the source material [135]. God et al., reported that red raspberries exhibited
cytotoxic activity in LoVo cells, where antioxidants play a minor role and no apoptotic effect was
observed [134].

As far as in vivo studies are concerned, lyophilized black raspberry consumption has been reported
to decrease the multiplicity on azoxymethane (AOM) induced dysplastic aberrant crypt foci (ACF),
total tumors, tumor volumes, adenomas and adenocarcinomas in Fischer 344 rats [136]. In addition,
black raspberries significantly reduced urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels and
altered oxidative stress markers, and markers of DNA damage [136]. Bi et al., investigated the
chemopreventive effects of freeze dried black raspberries in two mouse models of human colorectal
cancer, namely Apc1638+/´ and Muc2´/´ [138]. They found that 12-week feeding of black raspberries
significantly inhibited intestinal tumor formation by reducing tumor incidence and tumor multiplicity
in both models [138]. Mechanistic studies informed that black raspberries inhibited tumor development
by (i) suppressing β-catenin signaling in Apc1638+/´ mice; (ii) reducing chronic inflammation in
Muc2´/´ mice and (iii) inhibiting intestinal cell proliferation in both models [138]. Furthermore,
black raspberries inhibited colonic ulceration associated with colon cancer in interleukin-10 (IL-10)
knock-out mouse by suppressing the nuclear translocation of β-catenin [137]. Dietary supplementation
of freeze dried black raspberries markedly reduced dextran sodium sulfate (DSS) induced acute injury
to the colonic epithelium and colonic ulceration in C57BL/6J mice [140]. Wang and colleagues found
that black raspberries suppressed colonic ulceration by (i) decreasing NF-kB p65 protein expression;
(ii) reducing the level of DNMT3B; (iii) attenuating promoter methylation of tumor suppressor genes
in the Wnt pathway; and (iv) decreasing translocation of β-catenin to the nucleus [140]. Moreover,
black raspberries induced anti-inflammatory activity by suppressing tissue levels of COX-2 as well as
proinflammatory cytokine tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2) and IL-1β in
DSS-induced ulcerative colitis in male C57BL/6J mice [139].

4.2. Blueberry

The blueberry (Vaccinium corymbosum L., family: Aricaceae) is rich in polyphenols such as
anthocyanins, flavonols, tannins and phenolic acids which show the potentiality to prevent cancer
through their biological activities [141]. In the last decade, the blueberry has become more famous for
its nutritional value and human benefits.

Blueberry extract was reported to inhibit human colon cancer HT-29 and HCT-116 cell proliferation
at high concentrations [145] and human colon cancer Caco-2 cells growth at low concentrations [162].
It was shown that the inhibition of cancer cell proliferation was highly correlated with the levels
of polyphenols, flavonoids and antioxidant activities [142,145]. For example, anthocyanin rich
extracts of the blueberry act as potent intracellular antioxidants in Caco-2 cells, even at very low
concentrations [143]. Similarly, delphinidin and malvidin, isolated from a blueberry anthocyanin-rich
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extract, repressed the proliferation of DLD-1 and COLO205 human colorectal cancer cells via induction
of apoptosis [144]. Yi et al., investigated the proliferative effect of dried extracts and different fractions
of blueberries in HT-29 and Caco-2 cells. They found that anthocyanin fractions presented significant
antiproliferative activity and increased DNA fragmentation, indicating the induction of apoptosis [141].
In vitro digestion (IVD) and colonic fermentation of blueberry polyphenols were tested using normal
human colonic epithelial CRL 1790 cells and human colorectal cancer HT-29 cells [146]. A high stability
of total polyphenols and anthocyanins during the simulated gastric digestion step was found but
intestinal digestion decreased polyphenol and anthocyanin contents compared to the non-digested
samples [146]. The catabolic products showed lower antiproliferative and antioxidant effects in HT-29
or CRL-1790 cells [146] and suggested that colonic fermentation may alter the biological activity of
blueberries. In another study, anthocyanin-enriched fractions from blueberry-induced apoptosis in
HT-29 cells by increasing DNA fragmentation and caspase-3 activity [148]. This study also noticed
that anthocyanin-enriched fractions decreased quinine reductase and glutathione S-transferase (GST)
activities compared with untreated cells [148]. Moreover, delphinidin inhibited HCT-116 cells growth
by: (i) inducing apoptosis by cleavage of PARP, activation of caspase-3, -8, and -9 and alteration of B-cell
lymphoma 2 associated X (Bax)/B-cell lymphoma 2(Bcl-2) ratio; and (ii) arresting cell cycle at G2/M
phase [147]. Delphinidin-induced apoptosis and cell cycle arrest were associated with suppression
of NF-κB pathway [147]. Pterostilbene, a primary antioxidant component of blueberries, suppressed
HT-29 cell proliferation as well as inflammation by down regulating the levels of β-catenin, cyclin D1,
c-MYC and phosphorylation of p65 [149].

In an in vivo study, blueberries and pterostilbenes reduced the incidence and multiplicity
of ACF formation with AOM induced rats [149,150] and significantly increased hepatic GST
activity [150]. Paul and coworkers noticed that pterostilbenes inhibited colon tumorigenesis by
regulating the Wnt/β-catenin-signaling pathway and the inflammatory responses. They found that
pterostilbenes (i) decreased cell proliferation markers, such as proliferating cell nuclear antigen (PCNA);
(ii) down-regulated the expression of β-catenin and cyclin D1; (iii) reduced the expression of
inflammatory enzymes, inducible nitric oxide synthase (iNOS) and COX-2, and inflammatory
cytokines, TNF-α and IL-1β and (iv) decreased nuclear staining of phospho-p65 [149]. Artificial
colorectal tumors were created in rats by cyclic treatment with DSS. Blueberry husks and a mixture
of three probiotic strains (Bifidobacterium infantis DSM 15159, Lactobacillus gasseri DSM 16737 and
Lactobacillus plantarum DSM 15313) were used for treatment. This mixture reduced the number of
dysplastic lesions and mucosal ulcers, lowered the proportion of butyric acid and decreased the
haptoglobin levels in rat colon [151].

4.3. Grape

Grapes (Vitis vinifera L.) are one of the most popular and consumed berries worldwide belonging
to the Vitaceae family. They are rich in phytochemicals, mostly phenolic acids, stilbenes (resveratrol),
anthocyanins, and proanthocyanidins.

Grape seed proanthocyanidin extract (GSPE) has been reported to significantly hinder cell viability
and increase apoptosis in Caco-2 cells, but not in normal colon cells [152]. The increased apoptosis in
GSPE-treated Caco-2 cells was correlated with an attenuation of PI3-kinase (p110 and p85 subunits)
and PKB Ser (473) phosphorylation [152]. Likewise, anthocyanin-rich grape extracts inhibited colon
cancer derived HT-29 cells growth [153,154] and suppressed doxorubicin-mediated enhancement of
levels of topoisomerase II covalently linked to DNA in HT-29 cells [155]. Furthermore, obacunone
and obacunone glucoside isolated from seeds of marsh white grapes generated cytotoxicity in human
colon cancer SW480 cells by inducing apoptosis through activation of cytochrome-c mediated intrinsic
apoptosis pathway [156]. The increase of caspase-3 and -9 activities and the reduction of Bcl-2/Bax
gene transcription ratio were also confirmed in the involvement of apoptosis. In addition, obacunone
and obacunone glucoside arrested cells at G1 and G2/M phase by activation of p21 protein [156].
Nevertheless, grape waste, that contains a high amount of polyphenols, showed a strong antiradical
and antiproliferative activity in Caco-2 cells, and a significant reduction of cells in G1 phase [157].
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Regarding in vivo studies, anthocyanin-rich extracts from grapes reduced colonic ACF formation
induced by AOM in male Fischer 344 rats compared with the control group [158]. The extracts
down-regulated COX-2 gene expression in colonic mucosa but there was no change in cellular
proliferation [151]. Total polyphenolic extracts from red wine were also reported to reduce the number
of adenomas on 1,2-dimethylhydrazine (DMH) induced colon carcinogenesis in rats [159]. In another
study, lyophilized red grape pomace, containing proanthocyanidin-rich dietary fiber, decreased the risk
of CRC by persuading genetic and metabolic variation in female C57BL/6J mice. Grape antioxidant
dietary fibers induced (i) up-regulation of tumor suppressor genes, NBL1, and of apoptosis genes,
BFAR and CARD14; (ii) down-regulation of tumor development genes (such as TNFAIP8L1 and TNF),
proto-oncogenes (such as RASSF4, RAP2C, and RAP2B), and cell cycle genes, (iii) modulation of
some genes, including lipid biosynthesis ELOVL5, energy metabolism G6PC2, PDK4, SUCLG2, and
SUCNR1 [160].

4.4. Strawberry

Strawberries (Fragaria X ananassa Duch.; family: Rosaceae) are known as a functional food with
a remarkable combination of phytochemicals (ellagic acid, anthocyanins, quercetin, and catechin),
vitamins (ascorbic acid and folic acid), mineral and fibers [66,67,199].

Strawberry fruit crude extracts and purified compounds have been reported to inhibit the growth
of human colon cancer HT-29 and HCT-116 cells [161]. Polyphenol-rich extracts also exhibited greater
antiproliferative activity in Caco-2 cells [162]. Olsson et al., investigated the inhibitory effect of five
cultivars of strawberries in colon cancer HT-29 cells [163]. This study noticed that organically grown
strawberries had a higher antiproliferative activity at the highest concentration compared with the
conventionally grown type. The presence of a higher content of secondary metabolites in organically
grown strawberries was responsible for anticarcinogenic properties [163]. In another study, strawberry
extracts increased the inhibition of HT-29 and HCT-116 cells proliferation and stimulated apoptosis of
the COX-2 expressing HT-29 cells [145]. Moreover, strawberries retained their biological activity after
IVD and fermentation, and the digestive products showed significant anti-genotoxic, anti-mutagenic
and anti-invasive activity on HT-29 and HT-115 cells [116]. Furthermore, breakdown products of
strawberry extract including tyrosol and 4’-hydroxyphenylacetic acid were reported to modulate
cellular processes associated with colon cancer [116], while strawberries treated with essential oils,
namely thymol, menthol, or eugenol, exhibited strong radical scavenging capacity and antiproliferative
activity in HT-29 cells compared with untreated fruits [164]. Kaempferol is a flavonoid found in the
strawberry. The anti-carcinogenic effects of kaempferol have been described in HT-29 cells due to the
induction of cell cycle arrest at G1 and G2/M phase as well as suppression of the activity of CDK2,
CDK4, cyclin D1, cyclin E, cyclin, A Cdc25C, Cdc2, cyclin B1, retinoblastoma protein (Rb) and Wnt
signaling pathway [165,166].

Only few in vivo studies have investigated the effects of strawberry consumption on CRC. Dietary
lyophilized strawberries were reported to prevent inflammation-induced colorectal carcinogenesis
in Crj: CD-1 mice. Strawberries also reduced TNF-α, IL-1β, IL-6, COX-2, iNOS and PGE2 expression
and decreased phosphorylation of PI3K, Akt, ERK and NF-κB pathway, suggesting that strawberries
targeted proinflammatory mediators and oncogenic signaling for carcinogenesis suppression [167].

4.5. Bilberry

Bilberry fruit (Vaccinium myrtillus L.) belongs to the Ericaceae family and has been used in folk
medicine for centuries. It has been extensively studied as a source of anthocyanins and phenolic
composition as well as for its antioxidant activity [69,96,200].

Bilberry anthocyanins have been reported to act as a powerful intracellular antioxidant in
Caco-2 cells only at low concentrations [143]. In human colon cancer HT-29 cells, they inhibited
the growth [153,154,168] and suppressed the cellular viability via amelioration of oxidative DNA
damage, suppression of ROS level and elevation of GSH content [169]. However, there was little
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effect of these extracts on non-transformed colon epithelial NCM460 cells [154]. Bilberry phenolic
extracts were reported to induce antiproliferative effect in HT-29 cells by increasing the expression
of the p21WAF1 pathway [168]. Esselen and coresearchers found that bilberry extracts significantly
suppressed the DNA strand breaking effects of camptothecin and doxorubicin (topoisomerase poisons
applied during chemotherapy) in HT-29 cells [155]. Bilberry extracts were also found to be the most
effective among ethanol extracts of 10 edible berries in overwhelming the growth of human colon
cancer HCT-116 cells [201].

In an in vivo model, anthocyanin rich extracts of bilberries reduced the incidence of ACF in rat
colon induced by AOM. This effect was mediated, at least in part, by decreasing colonic cellular
proliferation, lowering COX-2 mRNA expression, and reducing the fecal bile acids and urinary
8-OHdG level [158]. In addition, dietary administration of freeze dried bilberry fruit significantly
reduced the total number of intestinal adenomas in Min (multiple intestinal neoplasia)/+ mice [171].
Cooke et al., investigated the chemopreventive effect of cyanidin-3-glucoside and Mirtoselect, an
anthocyanin mixture from bilberries, against intestinal adenoma development in the Apc Min mouse
model (a genetic model of human FAP). Ingestion of either cyanidin-3-glucoside or Mirtoselect reduced
adenoma load dose-dependently compared to controls groups. They also noticed that anthocyanins
were identified at the analytical detection limit in plasma, intestinal mucosa and urine [170].

4.6. Cranberry

The cranberry (Vaccinium macrocarpon Aiton, family: Ericaceae), a traditional folk remedy,
has gained importance over the past decade due to its phytochemicals, particularly flavonol glycosides,
anthocyanins, proanthocyanidins (condensed tannins), and organic and phenolic acids [173,202].

The antiproliferative activity of cranberry extracts and various fractions were observed against
a series of colon cancer cell lines including HCT-116, SW480 and SW620. The total polyphenol
fraction was the most active fraction against all cell lines compared to other cranberry extracts [173].
A flavonoid-rich fraction 6 (Fr6) and a more purified proanthocyanidin rich fraction were isolated
from cranberry presscake and whole cranberries. Fr6 and proanthocyanidin significantly inhibited the
proliferation of colon cancer HT-29 cells [172].

Cranberry products exhibited chemopreventive effects, also in vivo, against AOM induced colon
carcinogenesis in male Fisher 344 rats. Dietary feeding of cranberry juice instead of drinking water
contributed to significant reductions in the formation of ACF. Moreover, hepatic GST activities
were significantly higher compared to control animals [150]. Recently, Xiao et al., reported that
cranberry extracts and dried cranberries prevented experimental colitis induced by DSS in mice by
reducing shortening of colon length, colonic myeloperoxidase activity and decreasing production
of pro-inflammatory cytokines, TNF-α and IL-1β [174]. In another study, Fr6 and purified
proanthocyanidin rich fraction decreased tumor growth and volume in HT-29 cell line xenograft
mice [175]. In addition, juice of high-bush cranberries prevented the progression of DMH induced
colonic lesion numbers in the mouse colon at the initiation stage of colon cancer [176].

4.7. Mangosteen

The mangosteen (Garcinia mangostana L., family: Clusiaceae) is known as a medicinal plant due to
its remarkable pharmacological effects. It contains high amounts of α-, β-, and γ-mangostin xanthones,
its major bioactive compounds [71–73].

α-Mangostin and xanthone extracts have shown potent cytotoxicity in human colon cancer
HCT-116 cells by inducing the mitochondrial pathway of apoptosis [181]. These extracts also
inhibited 3 key steps in tumor metastasis including cell migration, cell invasion and clonogenicity.
In addition, they up-regulated the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways [181].
The inhibitory effects of α-mangostin and its related five compounds (3-isomangostin, xanthone,
9,10-anthraquinone, 9-anthracenecarboxylic acid and anthracene) were investigated in human colon
cancer HCT-116 cells. Among the tested compounds, α-mangostin was the most potent inhibitor,
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suppressing cell growth, inhibiting the activity of cellular DNA topoisomerases, interrupting cell cycle
in the G2/M phase and inducing apoptosis [177]. In another study, α- mangostin inhibited HT-29 cell
proliferation and decreased Bcl-2 and β-catenin expression [179]. Nakagawa et al., investigated in
colon cancer DLD-1 cells the cytotoxic effects of α-mangostin, which were mediated via induction
of caspase independent apoptotic pathway. They also found that α-mangostin induced apoptosis
was mediated via mitochondria pathway with the release of endonuclease-G and increases of
miR-143 expression [178]. Furthermore, α-mangostin acted synergistically with low dose 5-FU,
increasing DLD-1 growth inhibition [180]. Finally, γ-mangostin demonstrated anticancer activity
in HT-29 cells by producing intracellular ROS and inducing apoptosis [180].

Dietary administration of an extract from mangosteen pericarp containing α- and γ-mangostin
caused significant growth inhibition of the subcutaneous tumor of colorectal HCT-116 xenografts in
mice [181]. In addition, α-mangostin reduced tumor mass and the concentrations of Bcl-2and β-catenin
of colon cancer HT-29 xenograft mice compared to the control group. In this study, xanthones and
their metabolites were identified in mice serum, tumor, liver and feces [179]. Oral administration of
α-mangostin also decreased the growth of colon cancer Her2/CT26 xenografts in mice. The anti-tumor
effect of α-mangostin was attributed to autophagic activation rather than induction of endoplasmic
reticulum stress [182]. The crude α-mangostin significantly inhibited the induction and development of
ACF formation in DMH induced in Fisher 344 rats [183], where fewer dysplastic foci, decreased PCNA
in colon and β-catenin accumulated crypts were also detected [183]. Furthermore, crude methanolic
extract from mangosteen pericarp suppressed tumor growth and significantly increased the life span
by nearly double in BALB/c mice bearing colon cancer NL-17 xenografts [184].

4.8. Blackberry

Blackberries (Rubus fruticosus L.) belong to the family of Rosaceae, and are rich in poly phenolics
such as ellagic acid, tannins, ellagitannins, quercetin, gallic acid, anthocyanins, and cyanidins that are
best known for their high antioxidant action [203].

In HT-29 and HCT-116 cells, phenolic-rich blackberry extracts inhibited cell proliferation
and induced apoptosis by internucleosomal DNA degradation at different concentrations [145].
Anthocyanin rich extracts from hull and crude blackberries showed significant antioxidant
and antiproliferative activity in HT-29 cells [185] and inhibited 2,21-Azobis (2-amidinopropane)
dihydrochlorid induced oxidative damage and associated cytotoxicity in Caco-2 colon cancer cells [186].

Blackberries exhibited chemopreventive effects against chemically induced colon carcinogenesis
in male Fisher 344 rats. Dietary administration of blackberry juice also significantly reduced the
formation of AOM induced ACF in rats [150].

4.9. Blackcurrant

Blackcurrant fruit (Ribes nigrum L.; family: Grossulariceae) is commonly rich in phytonutrients,
vitamin C and antioxidants. The antiproliferative effect of blackcurrant extracts has been reported on
colon cancer HT-29 cells. The suppression of cancer cell proliferation was correlated with antioxidant
capacity [142]. Blackcurrant press residue extracts rich in anthocyanins and polyphenols inhibited the
proliferation of several colon cancer cells, including Caco-2, HT-29 and HCT-116. The extracts obtained
from high temperature induced higher antiproliferative activity compared to lower temperature [187].
In HT-29 cells, the antiproliferative effect was induced by induction of apoptosis [187] and suppression
of the p21WAF1 pathway [168]. In another study, blackcurrants showed anticancer activity after IVD
and fecal fermentation in HT-29 and HT-115 cells through the inhibition of key stages of initiation,
promotion and invasion [116].

4.10. Chokeberry

Chokeberries (Aronia melanocarpa L.) belong to the Rosaceae family. They have attracted substantial
attention because of their high content of antioxidants and polyphenols (procyanidins, anthocyanins
and phenolic acids) [76,204].
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To mimic physiological conditions, Bermúdez-Soto and colleagues subjected chokeberry juice
to in vitro gastric and pancreatic digestion. They found that exposure to chokeberry juice inhibited
Caco-2 cell proliferation by causing G2/M cell cycle arrest [125]. It also changed the expression of
some genes associated to colorectal cancer, such as carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1) gene which has an important regulatory role on cell proliferation [125].
Additionally, anthocyanin rich chokeberry extracts induced chemopreventive activity in HT-29 cells
by inhibiting the proliferative activity [153,154]. In another study, chokeberry extracts reduced cell
cycle progression mainly by blocking G1/G0 and G2/M phases, which coincided with increased
expression of p21WAF and p27kip1 genes and decreased expression of cyclin A and B genes. Furthermore,
COX-2 gene expression was also observed in HT-29 cells treated with chokeberry extract [188].
Finally, anthocyanin-rich extracts of chokeberry fruit significantly inhibited colonic ACF formation by
decreasing colonic cell proliferation in male rats treated with a colon carcinogen, AOM but did not
change other biomarkers [158].

4.11. Cloudberry

Cloudberry (Rubus chamaemorus L., family: Rosaceae) seeds and pulp are used as ellagitannin
sources with a high level of ellagic acid that exhibits potent anticarcinogen, antimutagen and
antioxidant activity [78,79,205].

Polyphenol rich extracts from cloudberries showed significant antiproliferative activity in
Caco-2 cells [162]. In HT-29 cells, cloudberry extracts inhibited cellular growth by increasing the
expression of p21WAF1 pathway and induced apoptosis by increasing Bax mRNA expression [168].

Dietary administration of freeze dried cloudberries significantly reduced tumor number and
size of intestinal adenomas in Min/+ mice. In large adenomas, cloudberries decreased levels of
nuclear β-catenin and cyclin D1. In addition, affymetrix microarrays exposed changes in genes
involved in colon carcinogenesis, including the decreased expression of the adenosine deaminase,
ecto-5’–nucleotidase and PGE2 receptor subtype EP4 [171].

4.12. Seabuckthorn

Seabuckthorn (Hippophae rhamnoides L., family: Elaeagnaceae) is a high-altitude medicinal plant
with a large number of nutrients, phytochemicals, and bioactive substances like vitamin C [189].

Polyphenol rich extracts from seabuckthorn induced antiproliferative activity in HT-29 cells.
Olsson et al., suggested that the inhibition of cancer cell proliferation was correlated with vitamin C
and carotenoid levels of seabuckthorn extracts [142]. A recent study has shown that isorhamnetin,
a flavonoid isolated from seabuckthorn, suppressed HT-29, HCT-116 and SW480 cells proliferation [189].
Mechanistic studies revealed that the antiproliferative activity of seabuckthorn was mediated by
arresting cell cycle at the G2/M phase and inhibiting the PI3K-Akt-mTOR signaling pathway [189].

Seabuckthorn seed oil also showed an in vivo potential role in protecting the colon tissue of
rats from the 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) induced oxidative damage.
They found that PhIP significantly induced oxidative stress, activated immediate early genes c-fos
and c-jun, and inhibited tumor suppressor genes p16 and Rb. On the other hand, seabuckthron seed
oil significantly improved superoxide dismutase, catalase and glutathione peroxidase activities and
reduced the malondialdehyde, protein carbonyl and DNA-protein cross-links levels in rat colons in
the presence of PhIP [190]. Furthermore, seabuckthorn seed oil normalized abnormal expression of
c-fos, c-jun, p16 and Rb mRNA genes [190].

4.13. Lingonberry

Lingonberries (Vaccinium vitis-idaea L., family: Ericaceae) present a complex polyphenolic profile
consisting principally of a mixture of flavan-3-ols and proanthocyanidins [206] and exhibit a high
antioxidant capacity [83,84,101].
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The anthocyanin fraction of lingonberry extracts decreased the proliferation of colon cancer
HT-29 cells in a concentration-dependent manner [142]. Recently, Wu et al., reported that anthocyanin
rich lingonberry extracts suppressed HT-29 cells growth by increasing expression of the p21WAF1

pathway [168]. Furthermore, McDougall and colleagues reported that lingonberry extracts exerted an
antiproliferative effect against human colon cancer CaCo-2 cells, and the extracts were generally more
sensitive at low concentrations but conversely less sensitive at higher concentrations [162].

Lingonberries exhibited in vivo chemopreventive properties by inhibiting adenoma formation in
rat colon. Diet containing freeze dried lingonberries significantly reduced tumor number and tumor
size in ApcMin/+ mouse colon. Cyclin D1 levels also decreased in large adenomas after feeding mice
with lingonberries [171].

4.14. Barberry

Barberries (Berberis vulgaris L., family: Berberidaceae) have a long history of medicinal use for
their multiple pharmacological and therapeutic effects. Various parts of this plant including its root,
bark, leaf and fruit have been studied for its natural antioxidant and phenolic compounds [207,208].

Berberine, an isoquinoline alkaloid found in barberries, has been identified as a potent anticancer
compound. It was reported that berberine caused inhibition of colon cancer SW480 cells growth
by arresting cell cycle at G2/M phase, which was accompanied by induction of p21 expression.
Berberine induced intrinsic pathway of apoptosis by loss of mitochondrial membrane potential, release
of cytochrome-c to cytosol, induction of Bcl-2 family proteins, caspases and cleavage PARP [191].
Berberine also suppressed the expression of inflammation markers, NFκB and COX-2, suggesting its
ability to inhibit inflammation. Furthermore, berberine inhibited caspase-8 mediated angiogenesis,
as confirmed through the expression of TNF related apoptosis-inducing ligand, vascular endothelial
growth factor (VEGF) and survivin [191].

4.15. Açai Berry

The açai berry (Euterpe oleracea Mart., family: Arecaceae) is a good source of phytochemicals like
other berries. It is rich in anthocyanins, proanthocyanidins, other flavonoids and lignans .The pulp of
this berry has been extensively studied for its antioxidant and anti-inflammatory activities [209].

Polyphenolic extracts of the açai berry showed anti-inflammatory and cytotoxic activities in
colon cancer cells. They preferentially inhibited the growth of SW480 and HT-29 cells with no
toxicity in nonmalignant CCD-18Co colon fibroblast cells [192]. Antiproliferative activity of açai berry
extracts was accompanied by (i) reduction of H2O2 induced ROS generation; (ii) down-regulation of
NF-κB and intracellular adhesion molecule-1 and vascular cell adhesion molecule-1. The polyphenolic
extracts of açai berries also downregulated prooncogenic specificity proteins targets Bcl-2, VEGF,
and surviving [192]. In addition, activation of mitochondrial proapoptotic pathway, involving increase
of cytochrome c, cleavage of caspase-3, and decrease of PARP-1, was also observed in SW480 cells after
treatment with açai berry extracts [192].

Recently, spray-dried açai powder was used for the prevention of early and late colon carcinogen
in male Wistar rats. This berry powder significantly reduced the number of aberrant crypts, invasive
tumors and tumor multiplicity. Additionally, reduction in tumor Ki-67 cell proliferation and net growth
index was also noticed in the açai berry fed group [193].

4.16. Gogi Berry

Goji berries (Lycium barbarum L., family: Solanaceae) are well known in traditional herbal medicine.
At present, they are used as a functional food with highly advantageous nutritive and antioxidant
properties [210]. They are rich in Lycium barbarum polysaccharides (LBP) [211]. LBP treatment
inhibited human colon cancer SW480 and Caco-2 cells growth by interruption of the cellcycle at the
G0/G1 phase and reduction of cyclin D, cyclin E, and CDK2 espression [194].
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4.17. Silverberry

The silverberry (Elaeagnus sp., family: Elaeagnaceae) is known as nutraceutical plant, which is
used for both food and medicine. Lee and coworkers investigated the potentiality of silverberry against
colon cancer. The extracts from seed and flesh of cherry silverberries induced anti-inflammatory and
anti-proliferation properties in HT-29 cells by reducing COX-2 expression and induced apoptosis by
decreasing phosphorylated Akt expression [195].

4.18. White Currant

The white currant (Ribes x pallidum, family: Grossulariaceae) is an interesting berry, containing
low levels of phenolics, whereas proanthocyanidins and phenolic acids are the predominant phenolic
compounds [90].White currant is effective in preventing cancer initiation and progression in Min
mouse. It reduced the number and size of adenomas in the small intestine and in the colon, and in both
places the area of adenomatous tissue did not increase. The chemopreventive effect of white currants
was mediated by the reduction of nuclear β-catenin and NF-κB levels in Min mice adenomas [196].

4.19. Arctic Bramble

Arctic brambles (Rubus arcticum L., family: Rosaceae) are considered the most valuable berry plant
of the genus Rubus because of their fine aroma and flavour. The major class of phenolic compounds in
arctic brambles is represented by hydrolyzable tannins (gallo- and ellagitannins) and anthocyanins [78].

Polyphenol-rich extracts, especially ET enriched fractions, were found to be effective
antiproliferative agents against human colon cancer Caco-2 cells. They were generally more sensitive
at low concentrations but conversely less sensitive at higher concentrations [162].

4.20. Elderberry

The elderberry (Sambucus nigra L., family: Adoxaceae) has been used both as food and medicine
since ancient times. It is rich in polyphenols and anthocyanins.

Anthocyanin rich elderberry extracts have been reported to induce antiproliferative activity in
colon cancer HT-29 cells [153].

4.21. Jamun Berry

Jamun berries (Syzygium cumini L. Skeels, family: Myrtaceae) have traditionally been popular in
the field of herbal medicine. The pharmacological activities are mainly attributed due to the presence
of different flavonoids and alkaloids [212].

In human 293T cell line, ET rich jamun berry extracts produced colonic metabolities UAs which
have potential against colon carcinogenesis. The anticarcinogenic effect of the jamun berry is mediated
by inhibition of the canonical Wnt signaling pathway [166].

4.22. Rosehip

Rosehips (Rosa villosa L., family: Rosaceae) have a high content of vitamin C, carotenoids and
phenolics [213].

Polyphenol rich extracts from rosehips inhibited HT-29 cell proliferation in a concentration-
dependent manner, and antiproliferative activity was correlated with high levels of carotenoids and
vitamin C [136] and flavonoids fraction [93].

4.23. Emblic

Emblic fruit (Phyllanthus emblica L., family: Phyllanthaceae) is commonly known as Indian
Gooseberry. It is considered as a potent functional food due to its numerous pharmacological
applications [214]. Hydrolyzable tannins and flavonoids are the major bioactive components of this
fruit [215]. It has been reported that emblic extract showed antiproliferative activity in HT-29 cells [197].
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In addition, emblic water extract inhibited genomic damage and cell death in human colon cancer
COLO320 cells by several mechanisms. Emblic extracts induced a significant decrease in necrosis
and nuclear division index as well as a marked increase in the frequency of chromosomal instability
in a dose- and time-dependent manner [198]. Emblic extracts also significantly increased apoptosis,
and there was a significant correlation of apoptosis with chromosomal instability [198].

5. Biological Activities of Berries Against colon Cancer: Human Studies

Individual case studies of successful treatment of colon cancer with different fruits (including
berry) and vegetables have been reported for chemoprevention. A limited number of clinical
investigations are available regarding the effect of various berry formulations on colon cancer (Table 4).

An anthocyanin-rich standardized bilberry extract, mirtocyan, showed chemopreventive efficacy.
Twenty-five CRC patients were selected (primary tumor or liver metastases) and were given a certain
amount of mirtocyan (from 1.4 to 5.6 g/day) for 7 days before surgery. Mirtocyan metabolites were
identified in plasma, colorectal tissue, and urine, but not in the liver [216]. As a result, proliferation of
tumor tissue was decreased by 7% compared with pre-intervention values. The low dose caused a small
but non-significant reduction in circulating insulin-like growth factor (IGF)-1 concentrations [216].

In Phase I pilot study, Wang et al., found that black raspberries effectively modulated both
genetic and epigenetic biomarkers in tissues from CRC patients. Before and after oral consumption of
black raspberry powder (60 g/day) for 19 weeks, biopsies of adjacent normal tissues and colorectal
adenocarcinomas were collected from 20 patients [217]. Colon and rectal biopsies tissues showed
that berries upstream demethylated tumor suppressor genes (SFRP2, SFRP5and WIF1) and PAX6a,
a developmental regulatory gene, only in patients who received the berry treatment for an average of
4 weeks [217]. Black raspberries also protectively modulated the expression of genes associated with
Wnt pathway (β-catenin, E-cadherin), cell proliferation, apoptosis, and angiogenesis [217]. In another
study, freeze dried black raspberries attenuated neoplastic changes in 24 colorectal cancer patients who
drank slurry of black raspberry powder (20 g in 100 mL drinking water) 3 times/day for 1–9 weeks.
Before and during berry treatment, plasma and biopsy samples of colorectal adenocarcinoma and
adjacent normal appearing tissues were taken. Patients who received the berry products for more than
10 days showed an increase in plasma concentration of granulocyte macrophage colony stimulating
factor (GM-CSF), and decrease in IL-8. These changes also interacted with beneficial changes in markers
of proliferation and apoptosis observed in colorectal tissue collected within the same week. The authors
found the plasma concentrations of GM-CSF and IL-8 may serve as non-invasive indicators to monitor
tissue response to berry-based interventions for CRC [218]. Wang and co-researchers suggested
that black raspberries might degenerate rectal polyps in patients with FAP [219]. 14 FAP patients
were treated with black raspberries, (orally and with suppositories inserted into the rectum) daily for
9 months. Oral supplementation did not provide additional benefits to the patients, but black raspberry
suppositories significantly decreased Ki-67 levels, DNMT1, and p16 promoter methylation, in rectal
polyps [219].

Blackcurrant powder reduced the activity of some colon cancer markers by acting as prebiotic
agents. Consumption of first leaf (FL) (composed of blackcurrant extract powder, lactoferrin and
lutein) and Cassis Anthomix 30 (CAM30; blackcurrant extract powder) significantly increased the
number of beneficial bacteria, lactobacilli and bifidobacteria in the gut, whereas the population sizes
of Clostridium spp. and Bacteroides spp. decreased significantly. In addition, consumption of FL and
CAM30 reduced the activity of β-glucuronidase (bacterial enzyme that increases risk for colorectal
cancer) and significantly decreased the fecal pH [220].
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Table 4. Human intervention studies on colon cancer using fresh or processed berry fruits.

Fresh or Processed Berry Study Subjects Duration and Dose/Intervention Key/Major Findings References

Anthocyanin-rich
standardized bilberry
extract, mirtocyan

25 colorectal
cancer patients

0.5–2.0 g/day for
7 days before surgery - Prevents proliferation of tumor tissue. [216]

Black raspberry power

20 colorectral
cancer patients

60 g/day of black
raspberry orally for 1 to 9 weeks

- Upregulates tumor suppressor gene.
- Modulates expression of genes associated with Wnt
pathway, proliferation, apoptosis and angiogenesis.

[217]

24 colorectral
cancer patients

20 g in 100 mL drinking water,
3 times/day for 1–9 weeks

- Induces chemoprevention by increasing markers of
apoptosis in colorectal tissue.
- Inhibits cell proliferation, and angiogenesis.

[218]

Black raspberry 14 patients with FAP

Oral treatment containing
60 g black raspberr/day, and
suppositories containing 720 mg
black raspberry/day for 9 months.

- Decreases cellular proliferation, DNMT1 protein
expression, and p16 promoter methylation
in adenomas.

[219]

FL and CAM30 prepared
from blackcurrant extract

30 healthy volunteers
(Aged 20–60 years)

Both product contain
672 mg blackcurrant power

- Expresses anticancer activity by decreasing the
activity of the bacterial β-glucuronidase enzyme and
lowering the fecal pH.

[220]
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6. Conclusions

Berry fruits are rich in bioactive constituents, including flavonoids, anthocyanins, phenolic acids,
stilbenes, and tannins, as well as nutritive compounds such as sugars, essential oils, carotenoids,
vitamins and minerals. Numerous scientific studies provide ample evidence that bioactive compounds
have the potential to prevent colon cancer risk. According to human studies, the chemopreventive
effects of berries and berry products have focused mainly on black raspberries and bilberries.
Some other berries such as arctic brambles, jamunberries, rosehips and emblic fruit are rich in bioactive
compounds but very few sporadic efforts (only in vitro) have been made regarding their effects on
colon cancer. In vivo studies need to be done on those berries.

Berry polyphenols and other bioactive compounds show anticancer effects on colon cancer thanks
to their ability to influence carcinogen metabolism, scavenge free radicals and reduce oxidative
damage to DNA. They activate several signaling pathways, including NF-κB, Wnt/β-catenin,
PI3K/AKT/PKB/mTOR, and ERK/MAPK and regulate major cellular processes, including
inflammation, proliferation and angiogenesis. Few studies show that berries constitute and also
induce anti-metastasis activity by inhibiting key features of cancer development (Figure 1). These may
provide clues for the development of novel agents that could be useful in cancer chemoprevention or
chemotherapy. The microflora in colon are assuredly capable of metabolizing bioactive compounds of
berries, producing metabolites that expose chemopreventive activity. Further work is needed to design
in vitro and in vivo studies that better reflect the colonic environment. In addition, much work needs to
be done on optimizing the bioavailability of berry polyphenols and determining their pharmacological
applications. Thus, the association of identified and unidentified compounds in these fruits and their
influence on colon cancer in targeted populations and patients makes this a very promising approach
for the prevention and treatment of colon cancer.
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of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric.
2012, 92, 1273–1281. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/jf070475a
http://www.ncbi.nlm.nih.gov/pubmed/17567034
http://dx.doi.org/10.1039/c2fo30058c
http://www.ncbi.nlm.nih.gov/pubmed/22673662
http://dx.doi.org/10.4172/2161-0509.1000178
http://dx.doi.org/10.1055/s-0028-1088306
http://www.ncbi.nlm.nih.gov/pubmed/18937167
http://dx.doi.org/10.1021/jf049450r
http://www.ncbi.nlm.nih.gov/pubmed/15453684
http://dx.doi.org/10.1002/biof.5520230410
http://www.ncbi.nlm.nih.gov/pubmed/16498212
http://dx.doi.org/10.1002/jsfa.4705
http://www.ncbi.nlm.nih.gov/pubmed/22083544
http://dx.doi.org/10.1016/S0955-2863(02)00179-1
http://dx.doi.org/10.1186/1472-6882-14-120
http://www.ncbi.nlm.nih.gov/pubmed/24690313
http://dx.doi.org/10.1016/j.foodchem.2012.10.081
http://www.ncbi.nlm.nih.gov/pubmed/23411204
http://dx.doi.org/10.1002/biof.1173
http://www.ncbi.nlm.nih.gov/pubmed/25359330
http://dx.doi.org/10.1002/ptr.2399
http://www.ncbi.nlm.nih.gov/pubmed/18618524
http://dx.doi.org/10.1021/jf203989k
http://www.ncbi.nlm.nih.gov/pubmed/22224493
http://dx.doi.org/10.1007/s10787-011-0107-3
http://www.ncbi.nlm.nih.gov/pubmed/22189914
http://dx.doi.org/10.1051/fruits/2015014
http://dx.doi.org/10.1089/152308601317203521
http://www.ncbi.nlm.nih.gov/pubmed/11813993
http://dx.doi.org/10.1111/j.1750-3841.2012.02715.x
http://www.ncbi.nlm.nih.gov/pubmed/22591199
http://dx.doi.org/10.1016/j.foodchem.2010.12.007
http://www.ncbi.nlm.nih.gov/pubmed/25213929
http://dx.doi.org/10.1002/jsfa.4695
http://www.ncbi.nlm.nih.gov/pubmed/22083314


Molecules 2016, 21, 169 34 of 40

94. De, A.; Papasian, C.; Hentges, S.; Banerjee, S.; Haque, I.; Banerjee, S.K. Emblica officinalis extract induces
autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft
tumors. PLoS ONE 2013, 8, e72748. [CrossRef] [PubMed]

95. Li, Y.; Sun, H.Y.; Yu, X.Y.; Liu, D.; Wan, H.X. Evaluation of cellular antioxidant and antiproliferative activities
of five main Phyllanthus emblica L. Cultivars in China. Indian J. Pharm. Sci. 2015, 77, 274–282. [PubMed]

96. Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem.
2001, 49, 4076–4082. [CrossRef] [PubMed]

97. Ellingsen, I.; Hjerkinn, E.M.; Seljeflot, I.; Arnesen, H.; Tonstad, S. Consumption of fruit and berries is inversely
associated with carotid atherosclerosis in elderly men. Br. J. Nutr. 2008, 99, 674–681. [CrossRef] [PubMed]

98. Terao, J. Dietary flavonoids as antioxidants. Forum Nutr. 2009, 61, 87–91. [PubMed]
99. Ranelletti, F.O.; Maggiano, N.; Serra, F.G.; Ricci, R.; Larocca, L.M.; Lanza, P.; Scambia, G.; Fattorossi, A.;

Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in
primary colorectal tumors. Int. J. Cancer 2000, 85, 438–445. [CrossRef]

100. Alvarez-Suarez, J.M.; Dekanski, D.; Ristic, S.; Radonjić, N.V.; Petronijević, N.D.; Giampieri, F.; Astolfi, P.;
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