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Abstract 

Leukemia is a type of blood cell cancer that is in the bone marrow’s blood-forming cells. Two types of Leukemia 
are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lym-
phocytic and myeloid leukemias. This work evaluates a unique deep convolutional neural network (CNN) classifier 
that improves identification precision by carefully examining concatenated peptide patterns. The study uses leukemia 
protein expression for experiments supporting two different techniques including independence and applied cross-
validation. In addition to CNN, multilayer perceptron (MLP), gated recurrent unit (GRU), and recurrent neural network 
(RNN) are applied. The experimental results show that the CNN model surpasses competitors with its outstanding 
predictability in independent and cross-validation testing applied on different features extracted from protein expres-
sions such as amino acid composition (AAC) with a group of AAC (GAAC), tripeptide composition (TPC) with a group 
of TPC (GTPC), and dipeptide composition (DPC) for calculating its accuracies with their receiver operating character-
istic (ROC) curve. In independence testing, a feature expression of AAC and a group of GAAC are applied using MLP 
and CNN modules, and ROC curves are achieved with overall 100% accuracy for the detection of protein patterns. In 
cross-validation testing, a feature expression on a group of AAC and GAAC patterns achieved 98.33% accuracy which 
is the highest for the CNN module. Furthermore, ROC curves show a 0.965% extraordinary result for the GRU mod-
ule. The findings show that the CNN model is excellent at figuring out leukemia illnesses from protein expressions 
with higher accuracy.
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Introduction
Leukemia is a form of melanoma damaging blood cells 
and bone marrow that has various types of cancer dis-
eases. The most common types of Leukemia disease 
include polycythemia vera, chronic lymphocytic leuke-
mia, myelodysplastic syndrome, and acute lymphoblas-
tic leukemia [1]. Leukemia impacts the development of 
genes and proteomics that develop TCF3-HLF-positive 
acute lymphoblastic leukemia in the body [1]. Leukemia 
affects mostly adults over the age of 55, but it can also 
occur in children under 15 years. In Pakistan, human 
T-cell leukemia affects approximately 80% of children, 
and only 9% of them are treated but 71% of them are left 
untreated which leads to deaths [1, 2]. The symptoms of 
leukemia, a kind of blood cancer, include exhaustion, var-
ious infections, and brain hemorrhage or blood clotting. 
Leukemia interacts with the ability of the human body to 
manufacture healthy blood cells and antibodies. It may 
significantly affect a person’s antibodies and psychologi-
cal health [2, 3]. We are able to analyze structured and 
unstructured data, including clinical notes, test results, 
diagnoses, and prescription information, utilizing medi-
cal record data by implementing deep learning models 
that provide the highest degree of efficiency and accuracy 
[4, 5].

Deep learning applications in biotechnology are rap-
idly growing to anticipate leukemia disease by taking 
protein expressions for experiments [4–7]. The imple-
mentation of deep learning algorithms can predict pro-
tein expression interactions in leukemia disorders [8]. 
Therefore, many medical sectors that depend on these 
proteins to improve the prediction accuracy of leuke-
mia illnesses through protein expression relationships, 
would be greatly impacted by an efficient deep-learning 
approach. The basic purpose of using multiple modules 
of deep learning is to predict the leukemia disease at the 
first stage [5, 8]. In deep learning, methodologies like 
sequence alignment and computer modeling give ideal 
accuracy and computational effectiveness for the predic-
tion of leukemia disease [6, 7].

Blood cancers, which affect white blood cells, organs, 
and bone marrow, exhibit unique pathologies. Unlike 
other cancers that give rise to solid tumors, leukemia 
manifests by producing an abnormally high number of 
white blood cells, disrupting normal vascular functions. 
Machine learning methodologies play a substantial role 
in leukemia treatment, be it for identifying different 
myeloma types or detecting the disease in individuals. 
However, this severe form of cancer presents significant 
medical challenges, often requiring specialized doctors 
and pathologists to manually examine blood samples 
under a microscope for diagnosis. In managing cancer 

cases, practitioners in this field can greatly benefit from 
tools like image processing and pattern recognition.

Deep learning models have shown their potential in 
accurate disease diagnosis, compared to machine learn-
ing models [9–11]. In this study, various deep-learning 
models are employed using various protein composi-
tions for leukemia classification. This research provides 
deep learning-established results that outperform other 
approaches in reliably categorizing sequences of pro-
teins associated with acute lymphocytic leukemia (ALL). 
Besides experimenting with different protein composi-
tions, cross-validation is also carried out for in-depth 
evaluation of models’ robustness and generalization.

This research presents a state-of-the-art analysis of 
growing leukemia disease in protein by using multiple 
deep-learning approaches. By applying the convolutional 
neural network (CNN), recurrent neural network (RNN), 
multilayer perceptron (MLP), and gated recurrent unit 
(GRU) models, this study gives an accurate prediction of 
leukemia disease in bone marrow and blood cell tissues 
for detection and diagnosis of cancer at first stage. Exper-
imental findings reveal that deep learning models can be 
a potential solution for the automated detection of leuke-
mia disease. A diverse range of deep learning approaches 
such as CNN, RNN, MLP, and GRU are adopted for their 
efficacy in preconditioning, segmentation, feature extrac-
tion, and classification. It is vital to highlight that feature 
extraction necessitates a high level of skill, as bad seg-
mentation can degrade feature selection and, as a result, 
classification accuracy.

This research presents a detailed analysis of the grow-
ing importance of leukemia genes in protein sequences 
and their significant involvement in leukemia disease. By 
implementing multiple deep learning techniques such as 
sequence alignment and computer modeling, the accu-
racy and computational efficiency of anticipating leu-
kemia diseases in the expression of protein interactions 
improved. Precision prediction of leukemia diseases 
in the interactions between blood malignant tissues 
and bone marrow has been obtained by implementing 
advanced deep learning models, resulting in enhanced 
cancer detection and diagnosis. The following highlights 
the contributions of this study

• A detailed analysis of leukemia genes in protein 
sequences and their impact on leukemia disease is 
presented.

• A comparative analysis and feasibility of various deep 
learning models is investigated within the context of 
acute lymphocytic leukemia which can be beneficial 
for building advanced and more accurate computer-
aided diagnosis systems.
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• The importance of various features and their impact 
on the detection accuracy of deep learning models is 
also investigated. In this regard, amino acid composi-
tion, dipeptide composition, tripeptide composition, 
composition/transition/distribution, group of tripep-
tide composition, and group of amino acid composi-
tion are utilized to evaluate the performance of the 
models.

• Datasets were collected and processed for process-
ing. The Swiss/Uniprot database web server was uti-
lized to collect leukemia protein sequences and the 
data was filtered for identical and similar sequences. 
In addition, CD-HIt configuration was used to 
remove redundant samples for improved accuracy.

• Performance evaluation of models is carried out 
concerning the independence testing, accuracy, F1 
score, receiver operating curve, and other evaluation 
parameters.

The remainder of this study is structured as follows. 
Related work section introduces the work about disease 
detection for cancerous types, and materials and methods 
are presented in Materials and methods section. Results 
and discussion section is about the results of prediction 
of leukemia peptides using deep learning models. In the 
end, Conclusion section gives the conclusion.

Related work
The complexity of bioinformatics and biomedical data 
presents methodological challenges when applying 
machine learning approaches to extract features, classi-
fication, and visualize data. To address these challenges, 
the study [12] proposes the utilization of clustering to 
identify predictive subgroups in cases of leukemia and 
peptide diseases. In the study, two tests were conducted 
to condense features into binary vectors using k-means 
clustering and ten different distance metrics. The authors 
employed multidimensional scaling to illustrate the con-
densed feature vectors. Using the Kaplan-Meier esti-
mates technique and the Cox proportional hazard model, 
survival analysis was carried out to investigate the predic-
tive benefits. The detected clusters and survival outcomes 
were shown to be statistically significantly correlated by 
the researchers. Notably, significant associations were 
reported between overall survival (P = 0.0164) and the 
time elapsed between diagnosis and therapy (P = 0.0039). 
Through the use of multidimensional scaling, the clusters 
were effectively distinguished, revealing a gradient that 
corresponded to a pattern of extended survival. Individu-
als with prolonged continuity exhibited mutations in the 
immunoglobulin heavy-chain variable region gene glyco-
protein (IGHV), a lack of the Zap 70 pattern, a predomi-
nance of females, and a younger age.

Accurate diagnosis of diseases, such as cancer, is essen-
tial in biomedical procedures, where gene products are 
employed to detect proteins based on gene expression 
levels. However, the extensive dimensions of gene expres-
sion data render them impractical for analysis using 
conventional statistical methods. The study [13] aims to 
identify leukemia peptides using innovative techniques. 
A dataset comprising 22,283 proteins from the Gene 
Transcription Collection repository’s leukemia prot-
eomic data underwent preprocessing, involving Python’s 
normalization tests and principal component analy-
sis, before the application of deep neural networks. The 
results indicated that deep learning surpassed traditional 
methods, achieving accuracy rates of 63.33% and 96.67% 
for deep neural networks with three hidden layers and a 
single-layer neural network, respectively. The utilization 
of modern techniques, such as deep learning, has the 
potential to enhance disease accuracy and performance, 
and it should be implemented in cancer detection and 
the immunogenic identification of various tumor types.

In the field of bioinformatics, the use of machine learn-
ing has become increasingly common for cancer predic-
tion. However, deep learning, which is relatively new, 
has sparked debates regarding its effectiveness. Only 
a limited number of studies have explicitly compared 
deep neural networks with traditional machine learning 
approaches, and the results have varied. The study [14] 
conducts a comprehensive assessment of deep learn-
ing’s performance in cancer prediction across 22 protein 
expression computation tasks. The study investigates 
critical input factors and compares neural networks 
to established standard procedures. One specific task 
involves predicting the presence of cancer; however, the 
class distribution is significantly imbalanced, with 92.7% 
of samples categorized as cancer. Additionally, the study 
assesses the effectiveness of various transfer methods 
through several experiments and scenarios.

In [15], researchers shared valuable insights with their 
peers by reviewing various image-processing methods 
used in machine learning for leukemia diagnosis. Leu-
kemia, a form of blood cancer, is characterized by the 
production of abnormal white blood cells in the bone 
marrow. It is categorized into two main types: acute leu-
kemia, which progresses rapidly, and chronic leukemia, 
which develops more slowly. Each type can be further 
subdivided into two subtypes lymphocytic and myeloid. 
Additionally, this review examined the advantages and 
disadvantages of relevant research in this field.

CNN approaches have shown remarkable perfor-
mance in effectively categorizing cancerous leukocytes. 
Additionally, computer-aided diagnostic (CAD) models 
prove highly effective in detecting leukemia and assist-
ing clinicians in early disease detection. The objective 
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of [16] is to develop a deep learning model exclusively 
for the classification of leukemic B-lymphoblasts. Data 
augmentation techniques were employed to handle 
limited datasets and build reliable and accurate deep-
learning methodologies. Transfer learning was used to 
expedite learning and enhance the proposed network’s 
performance. The CNN model successfully harmonizes 
attributes extracted through systematically designed 
deep learning techniques, achieving a test accuracy of 
100% for both cancerous and healthy cases, as well as 
for the ResNet-34 and DenseNet-121 models. These 
models also demonstrated perfect statistics and F1 
scores. For acute myeloid leukemia (AML) prediction, 
the accuracy reached 99.66%, with precision at 1.0%, 
recall at 0.99%, and an F1 score of 0.98%. ResNet-34 
exhibited a precision, recall, and F1 score of 99.74% for 
chronic lymphocytic leukemia (CLL), while this class 
achieved a precision, recall, and F1 score of 0.99%. 
For chronic myelogenous leukemia (CML) prediction, 
ResNet-34 achieved an accuracy of 99.73%, a precision 
of 0.99%, a recall of 1.0%, and an F1 score of 0.98.

AML, a form of blood malignancy with multiple sub-
types, exhibits significant associations between specific 
recurrent chromosomal abnormalities and the response 
to therapy, duration of remission, and overall survival. 
Consequently, these abnormalities are utilized to catego-
rize patients into three risk groups: favorable, intermedi-
ate, and adverse. However, the relationship between gene 
expression and these risk categories remains unclear. The 
gene expression patterns closely resembled those of these 
risk groups, suggesting that they could offer valuable 
insights into the origin of lymphoma. In [17], the authors 
propose using Bayesian ordinal response models to iden-
tify risk groups based on homological physiognomic 
information. To model the multidimensional series of 
responses and expected risk groups, we employ a range 
of prior distributions, including spike-and-slab average, 
spike-and-slab extensible acceleration, and regression-
based strategies with factor integration indicators. The 

authors employ hypothesis tests with the Bayes factor as 
a metric for identifying relevant genes.

ALL, a type of cancer characterized by excessive lymph 
node proliferation in red blood cells, requires cost-effec-
tive and time-efficient diagnostic screening methods. Ini-
tial screening using peripheral blood smear (PBS) images 
is crucial due to its ease of use. However, challenges 
arise from symptomatic errors, non-specific prodromes, 
and the wide range of ALL symptoms that can impact 
the examination process. To address these challenges, 
the study [18] focuses on the utilization of machine-
learning classifiers in conjunction with the Grey Wolf 
optimization algorithm for feature selection, differenti-
ating between benign and malignant acute lymphoblas-
tic leukemia. An adaptive threshold technique is used to 
enhance contrast and reduce defects in the photographs. 
The model is based on the Grey Wolf optimized opera-
tion technique, specifically designed for feature reduc-
tion. The combined classifier categorizes myeloma into 
both cancerous and benign types. After applying the Grey 
Wolf refinement approach, the model achieves 99.69% 
accuracy, 99.5% sensitivity, and 99% specificity. A com-
parative analysis of alternative classification algorithms 
has been conducted to validate the proposed framework. 
The discussed studies provide significant insights into the 
current state of leukemia classification and a brief sum-
mary of such approaches is given in Table 1.

Materials and methods
This section is about the adopted methodology, the data-
set used for experiments, and the deep learning models 
employed in this study. Figure  1 shows the workflow of 
the adopted methodology.

Collection of datasets
Datasets were used to create training and test datasets 
for deep learning models, comprising both positive and 
negative peptide samples. The anti-inflammatory analy-
sis [8], and anti-cancer [19] datasets were collected from 

Table 1 Overview and comparison of discussed works

Ref. Architecture Accuracy F1 score Recall Precision MCC

[12] Cox proportional hazard model (P 14.0039 for generalization surviving; P 14.0064 for moments from determining 
to treatment.)

[13] DL (single-layer neural network and DNNs)      63.33 and 96.67 - - - -

[14] DL used in MLP      unbalanced 92.7% - - - -

[15] DL      97% (Reviewed) - - - -

[16] ResNet-34, DenseNet- 121’s      100% 100% 100% 100% -

[17] Bayesian variable model π j- Beta(0.01,0.19) is 6.58, 6.53, 3.54 for Model 11, Model ll, and model iv

[18] ML multiple classifiers (RF, NB, SVM, KNN) RF Is 
Best to Perform Result

     99.69% 99.5% 99% 99% -
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published papers, and the leukemia dataset was retrieved 
from the UniProt/Swiss-Prot protein web server data-
base (www.uniprot.org) and filtered for identical and 
similar sequences. The leukemia protein sequences were 
extracted from the UniProt/Swiss-Prot Web Server, and 
the CD-HIT configuration was employed to remove 
redundant samples. Positive and negative samples for 
leukemia peptides were obtained from the UniProt Pro-
teins web server database and investigated by Kim et al. 
The normalized dataset underwent a 20% reduction 
in homologous sequences, and the CD-HIT code was 
applied to the protein sequences [20].

Data processing
The accuracy of the results obtained in data analysis 
relies significantly on preprocessing, which includes the 
removal of noisy, inconsistent, missing, and irrelevant 
data. Noisy data pertains to incorrect entries in a data-
set. Data preprocessing encompasses the removal of 
duplicates, and noisy data, as well as handling missing, 
inconsistent, and redundant information. Various tools, 
such as the Jalview tool [21] for sequence alignment and 
CD-HIT, can be employed to achieve this [20]. To clus-
ter databases with high identification tolerance, ensur-
ing precise and optimal results, the CD-HIT method 
is employed to minimize the occurrence of repeated 
peptides by removing sequences with more than 40% 
identical sequences, accounting for the overall protein 
sequence [20]. Extremely identical sequences [20]. The 
final training dataset comprised 897 leukemia amino 
acids and 973 non-leukemia polypeptides, while the 

independent test set included 256 leukemia peptides and 
564 non-leukemia proteins. Deep learning theories were 
refined and examined for all assessed datasets, includ-
ing a separate validation set with the model architecture 
structure presented in Fig. 2.

Feature engineering method
For the selected leukemia datasets, the leukemia protein 
sequences are initially characterized through feature 
extraction by combining nine specific features. The aim is 
to construct an analog that can accurately identify leuke-
mia proteins, utilizing the features extracted from poly-
peptides retrieved via the featured web server [22], with a 
focus on macromolecules.

Features investigation
This study focused on estimating sequence-based fea-
tures of experimentally proven leukemia cancer peptides 
(LCP). Each biomolecule sequence was translated into 
a numerical vector based on the previously established 
attributes, with the aim of developing a deep learning 
model (Table 2). 

 i. Amino Acid Composition (ACC): represents the 
frequency of twenty different types of native amino 
compounds in certain peptide succession. When 
compared to the overall maximum number of 
characters in protein sequences, the 20 elements 
in a peptide sequence indicate the total quantity 
of occurrences of twenty different amino composi-
tions [13, 22, 23].

Fig. 1 Layer-wise flow of the applied methodology
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 ii. Tripeptide Composition (TPC): A cytokine is com-
posed of many amino acids linked together by mul-
tiple polypeptides. Melanostatin belongs to several 
tripeptides that the human body produces (prolyl-
leucyl-glycinamide). TPC represents an important 
potential source of inspiration for the composi-
tion of small molecule enhancers for living organ-
isms. TPC is defined as Equation  2. Ni indicates 
the number of the ith tripeptide. The TPC feature 
vector is composed of all possible tripeptides in a 
protein sequence, representing the arithmetical 
probability of those series of 3 amino acid compo-

sitions through tripeptide composition (TC). For a 
biological protein sequence of length L, the TPC 
feature vector has a length of 8000 (20 x 20 x 20). 
This vector, denoted as d1, d2, ..., d8000 , transforms 
the protein sequence into an 8000-dimensional 
space [22, 24]. 

 iii. Group of Tripeptide Amino Acid Composition 
(GTPC): The tripeptide composition functionality 
provides information about the amino acid compo-
sition of three adjacent amino acids in a polypep-
tide sequence, enabling the inference of its func-
tional properties. Using deep learning, it is possible 
to accurately predict the tripeptide composition 
functionality of a protein sequence, offering valu-
able insights into its biological activity and thera-
peutic potential. This approach has shown promise 
in identifying functionally important regions of 
proteins and can be applied in drug discovery and 
protein engineering. Overall, the identification of 

(1)fi =
wi

w − 2

(2)f8000 = f1, f2, ..., f8000T

Fig. 2 Architecture of the proposed approach

Table 2 Types of features methods

Feature type Description Dimension 
frequency

AAC Amino Acid Composition 20

DPC Dipeptide Composition 400

TPC Tripeptide Composition 8000

C\T\D Composition\transition\distribution 147

GTPC Group of Tripeptide composition 125

GAAC Group of Amino Acid Composition 5
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tripeptide composition functionality through deep 
learning can optimize the comprehension of pro-
tein combinations and aid in the invention of new 
treatments. The categorized tripeptide arrange-
ment arises from the combination of TPC, GAAC, 
and GTPC [21, 22]. Table  3 displays the same 
aforementioned amino acid characteristics for the 
grouped tripeptide composition (GTPC) as well as 
the combo of TPC and GAA.

 iv. Group of Amino Acid Composition: Another way 
to represent protein sequences in deep learning 
for classification and prediction tasks is through 
grouped GAACs. Genetic amino acid codes 
(GAACs) are developed by categorizing amino 
acids based on their physicochemical properties, 
recognizing that interactions between these cat-
egories compose a dynamic character in polypep-
tide anatomy and actions. The aliphatic group is 
one of five distinct groups. The first group, g1 , com-
prises aliphatic amino acids (GAVLMI), while the 
second group, g2 , includes aromatic amino acids 
(FYW). The remaining groups include the assured 
imputation group (KRH) as g3 , the negatively 
charged group (DE) as g4 , and the uncharged group 
(STCPNQ) as g5 [22]. 

 v. Dipeptide Amino Acid Composition (DPC): For 
labeling homologous (HUMAN) sequence data, 
Park and Kanehisa developed a novel sequential 
feature consisting of 400 characteristics that show 
the likelihood of each amino acid dipeptide. The 
suggested feature is made to counteract the quan-
tity of dipeptides found in a particular homologous 
protease sequence. It is anticipated that sequence 
analysis will be more accurate and efficient when 
this characteristic is included in sequence labeling. 
This feature offers useful data on the likelihood of 
every amino acid dipeptide in a sequence, which 
is utilized to deduce the functional characteristics 

(3)(p) =
N (p)

N
p ∈ {p1, p2, ..., p5}c

of the amino acid. All things considered, the sug-
gested sequential characteristic might improve 
our knowledge of protein sequences and help with 
drug discovery and protein engineering [25]. To 
determine the function of the dipeptide amino acid 
composition in protein amino acid sequences, deep 
learning algorithms are used. Using a sizable data-
set of known protein sequences with known dipep-
tide composition functionality, a deep neural net-
work is trained using this technique. Subsequently, 
the dipeptide composition functionality of novel 
protein sequences may be highly accurately pre-
dicted using the trained model. This method can be 
applied to protein engineering and drug discovery 
since it has demonstrated promise in finding func-
tionally significant areas of proteins. It is possible 
to deduce a protein sequence’s functional charac-
teristics by using the dipeptide composition func-
tionality, which offers details on the amino acid 
composition of nearby amino acids. Deep learning 
may be used in order to accurately forecast a pro-
tein sequence’s dipeptide composition functional-
ity, which offers important insights into the biologi-
cal activity and potential therapeutic applications 
of the protein [22, 26, 27]. 

  In this case, N(j, k) denotes the total quantity of 
occurrences the dipeptide (j,  k) appears, while 
Dc(j, k) denotes its frequency. There are N dipep-
tides in total in the protein sequence [22, 28].

Neural network architectures
Several deep learning architectures are adopted in this 
study. In deep neural networks, several architectures 
are proposed and utilized in the existing literature such 
as CNN, RNN, MLP, GRU, etc. [29]. Hybrid neural net-
works that combine these structures are also commonly 
used [13]. These complex networks have been successful 
in various fields [26]. In a recent study, researchers used 
Residual networks with 1-3 residual blocks and 2 fully 
connected layers, similar to models used for protein func-
tional annotation. They applied Batch Normalization to 
all layers, a Weight dropout of 0.1 to the fully connected 
(FC) layers, and used the Adam optimizer with mean 
squared error loss function and different activation func-
tions such as ReLU, tan(h), and sigmoid with uniform 50 
weight initialization [13, 26, 28, 29]. The subsequent text 
provides a brief description of these architectures.

(4)Dc(j, k) =
N (j, k)

N − 1

Table 3 For Amino acid and physiochemical compositions and 
its properties

Physiochemical properties Amino Acid 
Compositions

Sequential G, A, V, I, M

Aromatic F, Y, W

Positive charge K, R, H

Negative charge D, E

Uncharged S, T, C, P, N, Q
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Convolutional neural network
CNN plays a vital role in the deep learning technique 
[30, 31]. A typical CNN architecture comprises convolu-
tional, pooling, and fully connected layers. The convolu-
tional layer gathers information from the input data using 
the convolution operation. Among the CNN layers, the 
1D convolutional layer is the most commonly used, espe-
cially in analyzing protein sequences [30]. CNNs excel at 
capturing significant local features, making them widely 
applicable. For example, a convolution module can set 
up three layers with local connections and weight shar-
ing to extract crucial local information [31]. Pooling lay-
ers serve to reduce the size of the parameter matrix and 
avoid overfitting by shrinking the spatial dimensions of 
the activation map. Adding these layers can also improve 
computational efficiency. CNNs frequently include drop-
out regularization techniques and ReLU activation func-
tions in addition to the fundamental layers to induce 
nonlinearities and prevent overfitting during training 
[31].

For the CNN model, we used a ‘Batch_Size’ of 32 while 
the model was trained using 100 epochs. The CNN model 
contains flatten layers with 1D max-pooling and contains 
a total of 5 hidden layers containing 64 neurons and the 
dropout layers are used with a dropout rate of 0.1. Adam 
optimizer is used for optimization. Moreover, for filtering 
matrixes, we used ‘Filtter 1’, ‘Filter 2’, and ‘Filter 3’ with 32, 
64, and 128 sizes with a kernel size of 3.

Recurrent neural network
When performing sequence labeling tasks for assessing 
the current input, RNNs are utilized because of their abil-
ity to compute sequences well. Long short-term memory 
(LSTM) neural networks and GRU neural networks are 
the two distinct subclasses of RNNs. Their purpose is to 
capture data in a sequential manner by applying “mem-
ory” and “forgetting” strategies that are predicated on 
past conditions.

The RNN model comprises 5 hidden layers each with 
64 neurons and is trained using 100 epochs. It uses a 
‘Batch_Size’ of 32, similar to other models used in this 
study. For optimization, the Adam optimizer is used and 
for loss data calculation we applied the binary_cross_
entropy’ loss according to the label of the class.

Gate recurrent unit
GRU used in deep learning for processing sequential 
input, such as protein sequences, is the recurrent neural 
network design. GRU is a kind of RNN architecture used 
in deep learning. It has characteristics with the LSTM 
network, such as techniques for selectively controlling 
information flow. A single-member sequence (a vector 
with 100,000 dimensions) was processed by each record 

in the GRU model in 2014 to produce 32 GRU units. 
However, GRU is more computationally efficient than 
LSTM since it has fewer parameters. The gating mech-
anisms in the GRU network allow the recurrent unit to 
selectively recall or forget information from earlier time 
steps while also controlling the information flow within 
the unit. Its two gates the update gate and the reset shut-
ter-manage the amount of newly contributed data to 
the current state and the amount of the prior concealed 
state that is kept. Long protein data sequences may be 
efficiently evaluated by the GRU network by selectively 
keeping or deleting information. Two dense layers of ten 
(10) and one (1) perceptron, respectively, are coupled 
with GRU outputs to provide predictions for a two-class 
issue. The first dense layer employs ReLU activation for 
predictions, whereas the classification layer utilizes sig-
moid activation [32].

The GRU comprises 5 hidden layers, each having 64 
neurons, and is trained using 100 epochs. For optimiza-
tion, the Adam optimizer is used while 32 is used as the 
‘Batch_Size’ for GRU. Furthermore, for data loss calcula-
tion, we applied ‘binary_cross_entropy’ loss according 
to the label of classes which is represented as class 0 and 
class 1. In the used model, we split the data in the ratio 
of 0.8 to 0.2 for training and testing, respectively which 
calculates the loss validation values through the validate 
function.

Multilayer perceptron
Deep learning employs multilayer perceptrons as mod-
ules for calculating hidden layers. Conventional neural 
networks use weights to achieve optimal outcomes, con-
sisting of either a single layer or multiple layers of per-
ceptrons. Predictions emerge through the output layer, 
also known as the visible layer when data is input into the 
input layer. There may be one or more hidden layers pro-
viding different levels of abstraction [32].

In multi-layer perceptron, we used a ‘Batch_Size’ of 
32, and the model is trained using a total of 100 epochs. 
The Adam optimizer proved to be a good choice for opti-
mizing the multilayer perceptron. A dropout rate of 0.1 
is also used for the model. The ‘binary_cross_entropy’ is 
used as the loss parameter for the multilayer perceptron 
with respect to the label of the class.

Evaluation metrics
A confusion matrix is the main evaluation metric from 
where all evaluation metrics are extracted. It contains 
four types of values true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN). TP is 
the quantity of leukemia disease occurrences in protein 
sequences that are accurately predicted. Conversely, FP 
denotes the quantity of misclassified leukemia illnesses in 
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protein sequences. Similarly, TN represents the number 
of successfully predicted non-leukemia diseases in pro-
tein sequences, whereas FN indicates the number of non-
leukemia diseases that are wrongly predicted in protein 
sequences.

Seven indicators are used to evaluate the prediction 
model. The area under the receiver operating character-
istic curve (AUC), the Matthews correlation coefficient 
(MCC), the sensitivity, specificity, accuracy, negative pre-
dictive value (negative-positive value), and precision are 
used. Moreover, the precision and recall of the model 
are combined using the F1 score, which is the harmonic 
mean of the accuracy and recall of the model [32].

Accuracy shows the efficiency of the model regarding 
correct predictions. Specificity shows the calculation 
of the efficacy of the model to predict negative samples 
[32]. Sensitivity demonstrates the possibility of forecast-
ing positive examples for the model. Because it takes into 
account both classes despite unbalanced data, MCC is a 
stable measure. With both positive and negative samples, 
the model’s analytical capacity is explained by the MCC 
accuracy score [33]. The following formulas are used for 
these metrics.

Results and discussion
To test the robustness of the predictor independent test-
ing has been employed [34]. The first testing type is inde-
pendence testing, where all the data has been used to test 
the model. As discussed in the previous section, we have 
experimented with multiple modules for deep learning, 

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TP + FP

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)F1 score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(10)Accuracy =
TP + TN

TP + FP + TN + FN

(11)

MCC =
TN ∗ TP − FN ∗ FP

√
(FP + TP)(FN + TP)(FP + TN )(FN + TN )

∗ 100

such as CNN, RNN, ANN, MLP, and GRU). The leukemia 
protein prediction model is really classified using binary 
classification, where the problem is divided into two cat-
egories: ‘0’ and ‘1’.

Independent testing
This approach of splitting a dataset into a training set and 
a testing set is commonly employed in deep learning to 
assess the efficiency of models. The training set is utilized 
to train the model, while the testing set is used to evalu-
ate its performance on new, unseen data. An application 
of this technique is in the analysis of leukemia peptide 
sequences. It enables the assessment of feature extraction 
effectiveness through the utilization of a deep learning 
model that employs protein sequence features. In order 
to evaluate the effectiveness of models, deep learning 
techniques frequently divide datasets into training and 
testing sets. The testing set is used to assess the model’s 
performance on fresh, untested data, whereas the train-
ing set is used to train it.

It is standard procedure to split a dataset into training 
and testing and 70% to 30% split is the most commonly 
used for machine learning. The precise ratios, however, 
might change based on the size, complexity, and needs of 
the given application, among other things. Peptide fre-
quencies and molecular patterns are examples of charac-
teristics found in protein sequences that are used to train 
and evaluate algorithms. The dataset is split into two dis-
tinct sets, one for testing and one for training, at random 
to carry out the split. It is crucial to make sure that in 
both sets, the percentage of samples belonging to distinct 
classes stays consistent.

The selected features are utilized to train the model 
or algorithm after the data has been set. Lastly, trials 
on fresh, untested data are used to evaluate the model’s 
performance. It is crucial to compare the predicted out-
puts of the model with the actual outcomes of analyz-
ing the test data in order to assess the efficacy of feature 
extraction with deep learning modules. It is possible to 
calculate performance indicators like recall, accuracy, 
precision, and F1 score to evaluate how well this pro-
cedure is working. The model’s many components are 
tested independently using protein sequence characteris-
tics to make sure they are resilient and able to handle new 
and untested data.

Table 4 shows the results for AAC and GAAC features. 
Results suggest superior performance of MLP and CNN 
models. According to the independence testing in the 
(AAC, GAAC) approach, it is determined that the MLP 
and CNN modules achieved the highest accuracy in 
identifying diseases in protein sequences. Both the CNN 
module and the MLP module showed 100% accuracy, 
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precision, specificity, sensitivity, and Matthews’s correla-
tion coefficient.

To construct a prediction model, biological features 
were integrated. In this study, independency testing for 
both the MLP and CNN modules demonstrated identi-
cal accuracy values of 100% for precision, recall, and 
F1-score when applied to testing datasets. ROC in Fig. 3, 
the area under the curve graph, shows 100% accuracy for 
MLP and CNN modules.

Results using the Dipeptide Composition (DPC) fea-
tures are presented in Table  5, indicating the perfor-
mance of rNN, GRU, MLP, and CNN deep learning 
models. These models are applied to determine their 

efficiency regarding the use of DPC features from the 
dataset for leukemia peptide detection. Results indicate 
a superior accuracy of 64.47% from GRU. It achieved an 
F1 score of 53.98%, specificity of 83.10%, sensitivity of 
45.84%, recall of 45.84%, and precision of 65.85%, while 
the MCC is 31.45%. It is closely followed by the MLP 
model with a 64.11% accuracy. Results show degraded 
performance from these models when DPC is used for 
experiments. The area curve ROC graph shown in Fig. 4 
for testing results indicates that MLP outperformed with 
a score of 0.913.

Results for the jointly calculated independency test-
ing (TPC, GTPC) are given in Table 6. TPC and GTPC 

Table 4 Results of independency testing with amino acid composition and a group of amino acid composition

Model Specificity Sensitivity MCC Accuracy Precision Recall F1 score

RNN 82.41 42.90 27.75 62.65 63.22 42.90 51.17

GRU 86.09 37.35 27.19 61.72 65.42 37.35 47.55

MLP 100 100 100 100 100 100 100

CNN 100 100 100 100 100 100 100

Fig. 3 ROC graphs, a CNN modules for (AAC), and a group of (AAC, GAAC) composition, and b CNN modules for (ACC) and, a ( GAAC) composition

Table 5 Independence testing results of Dipeptide Composition (DPC)

Model Specificity Sensitivity MCC Accuracy Precision Recall F1 score

RNN 82.06 41.27 25.71 61.67 61.85 41.27 49.51

GRU 83.10 45.84 31.45 64.47 65.85 45.84 53.98

MLP 75.86 0.5236 28.99 64.11 60.45 52.36 56.11

CNN 71.49 0.5497 26.69 63.23 0.5760 54.97 56.11
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features are used for this set of experiments to show-
case the performance of deep learning models including 
CNN, RNN, MLP, and GRU. By applying these modules 
to testing data, we finalized the highest accuracy for 
disease identification. Experimental results suggest that 
MLP stands out with 80.00% accuracy, and specificity 
of 85.86%, sensitivity of 82.36%, recall of 76.36%, MCC 
of 88.99%, precision of 70.45%, and F1 score of 86.11%. 
RNN, GRU, and CNN have substantially lower scores 
for these metrics when TPC and GTPC are used for 
experiments. The ROC graph shown in Fig. 5 for testing 
results indicates that CNN performed outstandingly 
with a score of 0.890.

Validation using 10‑fold cross‑validation and independent 
dataset testing
Despite the results obtained using independence test-
ing, the models might not perform well on unseen data 
indicating the model’s overfitting to a particular class 
of dataset [22, 31]. Even if a large dataset is available, it 
might not be enough to evaluate the prediction model’s 
accuracy. K-fold cross-validation is a good solution for 
this problem [34]. Independent testing is quite detailed 
and can yield varying outcomes for a given benchmark. 
In situations when there is no clear record to support the 
model’s predictions, cross-validation is the most effective 
method for verifying and making sure a model is operat-
ing as intended [32].

Fig. 4 ROC accuracy of DPC peptide sequences cross-validation modules for amino acid composition

Table 6 Results of independence testing of Tripeptide Composition and a group of (TPC, GTPC) compositions

Model Specificity Sensitivity MCC Accuracy Precision Recall F1 score

RNN 75.86 49.75 17.77 62.80 59.22 49.75 54.07

GRU 80.22 41.59 23.73 60.91 59.71 41.59 49.03

MLP 85.86 82.36 88.99 80.00 70.45 76.36 86.11

CNN 71.49 54.97 26.69 63.23 57.60 54.97 56.11
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When splitting a record into k single folds for cross-
validation, k is the number of folds indicating how many 
portions of the dataset are made [26]. Each run chooses a 
different data % at random to verify the remaining data, 
ensuring that every fold of the data is utilized for both 
training and testing [21, 22]. The average of all accuracy 
values is the outcome. The dataset’s positive and nega-
tive examples were obtained using an identical num-
ber of records [22, 27]. After choosing a set of random 
values, k = 10 subgroups were created. For a variety of 
real-world data, cross-validation performs better than 
other techniques. These techniques are applied to ran-
dom or segmented data selection for testing [21, 22, 31]. 

A substantially 10-fold technique for cross-validation was 
used to produce the results displayed in Tables 7.

According to cross-validation testing for AAC, and 
GAAC composition results given in Table  7, the CNN 
model outperforms other models. It achieves an accuracy 
of 98.33%, specificity of 97.50%, sensitivity of 100%, MCC 
of 96.36%, and precision of 95.23% while the recall and F1 
scores are 100%, and 92.00%, respectively. Figure 6 shows 
that GRU shows better performance regarding the ROC 
curve with a score of 0.965.

Cross-validation results for TPC, and GTPC compo-
sition using CNN, RNN, MLP, and GRU, are given in 
Table  8. The overall highest performance is achieved 

Fig. 5 ROC accuracy of AAC, GAAC peptide sequences cross-validation modules for amino acid composition

Table 7 Results of cross-validation using Amino acid composition and a group of (AAC, GAAC) compositions

Model Specificity Sensitivity MCC Accuracy Precision Recall F1 score

RNN 96.25 98.75 93.63 97.08 92.94 98.75 95.75

GRU 95.62 92.5 87.85 94.58 91.35 92.50 91.92

MLP 98.12 95.00 93.42 97.83 96.20 95.00 95.59

CNN 97.50 100 96.36 98.33 95.23 100 95.59
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using the CNN model. It obtains an accuracy of 96.69%, 
specificity of 95.50%, sensitivity of 100%, MCC of 
62.93%, precision of 97.23%, recall of 100%, and F1 
scores of 97.59%. The best performance concerning 
the area under the curve ROC is obtained by the CNN 
model as well, as illustrated in Fig. 7, with a 0.994 score.

Along the same direction, cross-validation for deep 
learning models including CNN, RNN, MLP, and GRU 
is carried out using the TPC and GTPC composi-
tion and results are displayed in Table  9. Results indi-
cate superior performance of CNN model when using 
TPC, and GTPC composition. An accuracy of 98.33% 
is obtained by the CNN model. It also obtains better 
results regarding other evaluation metrics including a 
specificity of 95.00%, sensitivity of 100%, and MCC of 
92.93%. The area under the curve ROC, as shown in 
Fig. 8 shows a score of 0.994 for CNN which is the best 
among all the models.

Discussion
Determining leukemia proteins using biological char-
acteristics can be a time-consuming and difficult task, 
necessitating the use of computer-aided diagnosing 
methods. These technologies are critical for speeding 
up and simplifying the discovery of leukemia proteins. 
While these proteins have the potential to cause disor-
ders in the human body, they are also important in the 
development of therapies to treat drug addiction. Fur-
thermore, leukemia proteins play a crucial function in the 
creation of biomedicine and advancements in the field of 
life sciences.

Multiple deep-learning models including CNN, RNN, 
MLP, and GRU, are used to identify leukemia illnesses 
in protein sequences. The independency testing exami-
nation of these modules in this work demonstrates that 
MLP and CNN consistently have the highest accuracy 
in AAC, and GAAC compositions, reaching 100% in all 

Fig. 6 ROC accuracy of AAC and GAAC combined peptide sequences result of cross-validation test

Table 8 Results of cross-validation using TPC and a group of (GTCP) peptide sequences

Model Specificity Sensitivity MCC Accuracy Precision Recall F1 score

RNN 100 17.06 10.21 66.66 19.04 17.06 31.08

GRU 98.75 05.00 11.32 67.50 91.35 50.00 09.30

MLP 94.37 100 93.10 96.23 96.20 95.00 95.59

CNN 95.50 100 62.93 96.69 97.23 100 97.59
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calculations for detecting leukemia illnesses in protein 
sequences. TPC and GTPC combined calculation results 
showed good results, and TPC, and GTPC together cal-
culated the results for DPC.

Cross-validation experiments excel at detecting 
detailed patterns within large datasets, even when pre-
sented with a large number of characteristics and sam-
ples. Only a subset of the leukemia dataset’s thousands 
of features was used for the deep learning model with 
their groups combined peptide order and individual 
peptide sequences for efficient analysis, using some 

state-of-the-art techniques to estimate its produc-
tiveness. Deep learning is currently at the forefront of 
machine learning methodologies, generating excellent 
results in various fields such as healthcare, medicine, 
and bioinformatics. The usefulness of deep learning 
approaches has been rigorously proven, cementing 
their place as the most recent developments in this 
domain [32]. Deep learning has also shown promis-
ing results in several medical domains, including the 
diagnosis of leukemia diseases by converting protein 
sequence vectors into binary form with ‘0’ and ‘1’.

Fig. 7 ROC Accuracy of (TPC, GTPC) combined result of peptide sequences cross-validation test

Table 9 Results of cross-validation using Dipeptide Composition (DPC)

Model Specificity Sensitivity MCC Accuracy Precision Recall F1 score

RNN 96.25 98.75 93.63 97.08 92.94 98.75 95.75

GRU 95.62 92.5 87.85 94.58 91.35 92.5 91.92

MLP 98.12 95.00 93.421 97.83 96.20 95.00 95.59

CNN 97.50 100 76.33 98.33 95.23 100 95.59
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Conclusion
This study analyzes the use of various protein composi-
tions for leukemia detection employing multiple deep-
learning models including CNN, RNN, MLP, and GRU. 
With the combined paired peptide order and individual 
peptide sequences for analysis, a more in-depth and 
accurate detection of disease appearances in the human 
body through proteins, using some state-of-the-art 
techniques, was employed to estimate its productivity. 
Results suggest that CNN outperforms other models in 
properly identifying leukemia from protein sequences. 
A thorough independent testing examination of these 
modules in this work demonstrates that mostly MLP, 
CNN, and GRU consistently have the highest accuracy 
in all peptide combinations of sequences. AAC and 
GAAC accuracy of 100% shows the highest in mod-
ules like MLP and CNN, and their ROC graph shows 
100% results in MLP and CNN modules, while TPC 
and GTPC show an accuracy of 80.00% shows using 
the MLP model, and its ROC graph of 0.890 shows the 
highest results using the CNN. DPC shows an accuracy 
of 64.47% with GRU and its ROC graph of 0.913 shows 
the highest results when using MLP. In cross-validation 
testing, AAC, and GAAC peptide sequences accuracy 
of 98.33% shows the highest accuracy using CNN, while 
the best ROC score of 0.965 is obtained using GRU. 

For TPC and GTPC, an accuracy of 96.69% is achieved 
using the CNN model which also obtains the best ROC 
score of 0.965. DPC composition shows a cross-val-
idation accuracy of 98.33% using the CNN which also 
shows the best ROC score of 0.994. Deep learning mod-
els show the potential of automated leukemia detection 
using various protein compositions and can further be 
investigated to obtain better results in the future.
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