VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy
Artículo Materias > Biomedicina Universidad Europea del Atlántico > Investigación > Artículos y libros Abierto Inglés Background Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. Patient and methods In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. Results A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. Conclusion The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation. metadata Marcos, Ana T.; Martín‐Doncel, Elena; Morejón‐García, Patricia; Marcos‐Alcalde, Iñigo; Gómez‐Puertas, Paulino; Segura‐Puimedon, María; Armengol, Lluis; Navarro‐Pando, José M. y Lazo, Pedro A. mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, jose.navarro@uneatlantico.es, SIN ESPECIFICAR (2020) VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Annals of Clinical and Translational Neurology, 7 (5). pp. 808-818. ISSN 2328-9503
Esta es la última versión de este documento.
Resumen
Background Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. Patient and methods In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. Results A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. Conclusion The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.
Tipo de Documento: | Artículo |
---|---|
Clasificación temática: | Materias > Biomedicina |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros |
Depositante: | Usuarios 0 no encontrado. |
Depositado: | 01 Jun 2021 23:55 |
Ultima Modificación: | 03 Jul 2023 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/121 |
Versiones Disponibles de este documento
- VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. (deposited 01 Jun 2021 23:55) [Mostrada Ahora]
Hilos de Commentario/Respuesta
- Marcos, Ana T.; Martín‐Doncel, Elena; Morejón‐García, Patricia; Marcos‐Alcalde, Iñigo; Gómez‐Puertas, Paulino; Segura‐Puimedon, María; Armengol, Lluis; Navarro‐Pando, José M. y Lazo, Pedro A. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. (deposited 01 Jun 2021 23:55) [Mostrada Ahora]
Acciones (logins necesarios)
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer
<a href="/15987/1/s41598-024-83147-3.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A novel and efficient digital image steganography technique using least significant bit substitution
Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc. Recently, different image steganography methods have been proposed but most of them have reliability issues. Therefore, to solve this issue, we propose an efficient technique based on the Least Significant Bit (LSB). The LSB substitution method minimizes the error rate in the embedding process and is used to achieve greater reliability. Our proposed image-based steganography algorithm incorporates LSB substitution with Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key (SK), and transposition, flipping. We performed several experiments and the results show that our proposed technique is efficient and achieves efficient results. We tested a total of 165 different RGB images of various dimensions and sizes of hidden information, using various Quality Assessment Metrics (QAMs); A name of few are; Normalized Cross Correlation (NCC), Image Fidelity (IF), Peak Signal Noise Ratio (PSNR), Root Mean Square Error (RMSE), Quality Index (QI), Correlation Coefficient (CC), Structural Similarity Index (SSIM), Mean Square Error (MSE), Entropy, Contrast, and Homogeneity, Image Histogram (IH). We also conducted a comparative analysis with some existing methods as well as security analysis which showed better results. The achieved result demonstrates significant improvements over the current state-of-the-art methods.
Shahid Rahman mail , Jamal uddin mail , Hameed Hussain mail , Sabir Shah mail , Abdu Salam mail , Farhan Amin mail , Isabel de la Torre Díez mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx,
Rahman
<a href="/16011/1/sports-13-00007.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The aim of this study was to compare the external load of each session along competitive microcycles on an elite futsal team, considering the positions and relationships of the players. The external load of 10 elite players from a First Division team in the Spanish Futsal League (age 27.5 ± 7 years, height 1.73 ± 0.05 m, weight 70.1 ± 3.8 kg) were recorded across 30 microcycles. The players’ external loads were monitored using OLIVER devices. To analyse the external load, Levene’s test was conducted to assess the homogeneity of variances, followed by one-way analysis of variance (ANOVA) to identify differences in dependent variables across the different microcycle days and player positions. Regarding external load during the microcycle, the day with the lowest external load was MD-1, and the days with the highest external load were MD-3 and MD-4. In addition, considering playing positions, pivots exhibited the lowest loads throughout the microcycle, whereas wingers and defenders exhibited the highest loads, depending on the variables analysed. By providing reference values from elite contexts, this study offers practical insights for S&C coaches to optimize microcycles. Furthermore, it contributes to workload management strategies within sport science and public health frameworks, promoting sustainable performance and athlete wellness in futsal.
Héctor Gadea-Uribarri mail , Elena Mainer-Pardos mail , Ainhoa Bores Arce mail ainhoa.bores@uneatlantico.es, Rafael Albalad-Aiguabella mail , Sergio López-García mail , Carlos Lago-Fuentes mail carlos.lago@uneatlantico.es,
Gadea-Uribarri
<a href="/16153/1/1-s2.0-S2090123225000335-main.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Flavonoids are naturally occurring dietary phytochemicals with significant antioxidant effects aside from several health benefits. People often consume them in combination with other food components. Compiling data establishes a link between bioactive flavonoids and prevention of several diseases in animal models, including cardiovascular diseases, diabetes, gut dysbiosis, and metabolic dysfunction-associated steatotic liver disease (MASLD). However, numerous clinical studies have demonstrated the ineffectiveness of flavonoids contradicting rodent models, thereby challenging the validity of using flavonoids as dietary supplements. Aim of Review: This review provides a clinical perspective to emphasize the effective roles of dietary flavonoids as well as to summarize their specific mechanisms in animals briefly.
Xiaopeng Li mail , Enjun Xie mail , Shumin Sun mail , Jie Shen mail , Yujin Ding mail , Jiaqi Wang mail , Xiaoyu Peng mail , Ruting Zheng mail , Mohamed A. Farag mail , Jianbo Xiao mail ,
Li