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Abstract: Renewable energy solutions are appropriate for on-grid and off-grid applications, acting as
a supporter for the utility network or rural locations without the need to develop or extend costly
and difficult grid infrastructure. As a result, hybrid renewable energy sources have become a popular
option for grid-connected or standalone systems. This paper examines hybrid renewable energy
power production systems with a focus on energy sustainability, reliability due to irregularities,
techno-economic feasibility, and being environmentally friendly. In attaining a reliable, clean, and
cost-effective system, sizing optimal hybrid renewable energy sources (HRES) is a crucial challenge.
The presenters went further to outline the best sizing approach that can be used in HRES, taking into
consideration the key components, parameters, methods, and data. Moreover, the goal functions,
constraints from design, system components, optimization software tools, and meta-heuristic algo-
rithm methodologies were highlighted for the available studies in this timely synopsis of the state of
the art. Additionally, current issues resulting from scaling HRES were also identified and discussed.
The latest trends and advances in planning problems were thoroughly addressed. Finally, this paper
provides suggestions for further research into the appropriate component sizing in HRES.

Keywords: hybrid energy system; reliability analysis; techno-economic analysis; optimization meth-
ods; energy storage option; energy management system

1. Introduction

The electrical loads in residential, commercial, local, and industrial buildings have
increased dramatically because of the increased reliability of fossil fuels for energy. Use
of renewable energy sources for electric power generation supply should be prioritized
in order to reduce electric load dependency on fossil fuels. Currently, crude oil, coal, and
natural gas are used as alternative energy sources to meet about 70% of the global power
demand [1]. Energy demand is skyrocketing in response to the world’s growing economy
and population. Consequently, fossil fuel consumption is also increasing very steeply.
Conventional fuel stocks are limited and rapidly declining, which requires immediate
action and long-term solutions to avoid a possible energy disaster in the years to come.
Furthermore, fossil fuels are potential sources of hazardous emissions, such as greenhouse
gases, which greatly contribute to warming the globe [2,3].
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To be able to reduce global warming, one of the techniques is to raise awareness of the
significance of reducing power usage in homes and industries and promote energy-efficient
equipment. These concerns are being addressed by numerous researchers in a number
of ways. The more dependable, economical, ecologically beneficial, and widespread
alternative strategy is to support renewable energy systems and related technologies. The
construction of various hybrids of renewable energy sources has received a lot of attention
in an effort to enhance long-term energy supply systems. Hybrid renewable energy sources
(HRES) are systems that are reliable, CO2-emission-free, and an effective solution for
minimizing dependency on one renewable resource, which is important in areas where
natural resources are limited [4]. In view of [5,6], the integration of renewable energy
resources is an emission-free solution for energy generation that allows energy supply
in a district’s topography and also acts as a steady potential energy resource for isolated
generation applications. The renewable energy capacity indicated includes large-scale wind,
solar, and home photovoltaic (PV) systems. Most residential PV systems are grid-connected,
meaning the output receives excess electricity from the grid during the day and sends out
power at night. HRES can be utilized independently for each home or in microgrids (MGs),
which link a number of residences to create a small power grid in outlying areas where grid
expansion is impractical [7,8]. The second method is gaining traction in rural areas and
islands [9] because it is cost-effective and can be used alternatively in areas where power
infrastructure upgrades are prohibitively costly and fuel transportation is problematic [10].
Many researchers have carried out research to develop hybrids from diverse renewable
energy sources in order to improve long-term energy supply systems. According to studies
on geographic information systems (GIS), the global population of islands is projected to be
over 740 million [11]. Energy consumption has risen in recent years in islands and isolated
regions, making reliance on fossil fuels uneconomical. As a result, standalone HRES and
RES are viable long-term solutions for clean and cost-effective electricity for expanding
populations and enterprises in remote areas and islands [12–14].

Since RES generates the majority of its energy from the environment, it reflects the
environment’s intermittent character. A significant disadvantage of wind and solar energy
is how dependent they are on the environment. However, this issue may be solved by
creating an HRES, which combines two or more energy sources with a backup unit [15].
HRES can be used with elements like wind and sunlight that complement each other.
Moreover, energy storage systems may be combined with conventional energy sources
like diesel generators (ESS). HRES can give a certain application a more cost-effective and
steady electrical supply [16,17]. The high initial cost, rising cost of maintenance, fluctuating
rates, and depreciation are key difficulties involved with hybrid systems [18]. In addition,
HRES design is influenced by the availability of energy sources and site characteristics,
as well as by technological and societal limits [19–21], which affect the system’s power
generation arrangements and total energy production cost.

The appropriate size combination is crucial in this scenario for providing enhanced
reliability at the lowest cost. Determining the optimal design of HRES is a difficult under-
taking because it is based on data from energy sources, technical specifications, ambient
conditions, and load patterns [22]. HRES models, configurations, sizing, and optimiza-
tion procedures have been investigated for a variety of locations and constraints [22–26].
Because solar and wind hybrid systems work well together [27], the majority of the stud-
ies have utilized them. Methodologies for optimizing the size of solar and wind hybrid
systems have been combined, resulting in greater precision in optimization and control
approaches in both grid-connected and stand-alone HRES [28–32]. Novel single-algorithms,
hybrid algorithms, and software tools designed for grid-connected or remote sites and
islands, as well as critical performance comparisons for all solar and wind hybrid system
scaling, are among these techniques. Research focused on the application of artificial
intelligence techniques in scaling HRES has highlighted a few discrete artificial algorithms
for standalone and grid-connected applications [33,34]. Integration settings, storage system
options, size approaches, and independent HRES control and management were key areas
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of interest [35]. In [36], the author presented the case study of sustainable energy production
from municipal solid waste in Oman. In [37], authors presented the study related to the
challenges towards renewable energy production the Arabian Gulf region. Reference [38]
provides a discussion of the optimal design for several artificial single-algorithms and
software tools, as well as a number of hybrid combinations. For independent and grid-
connected applications, Upadhyay and Sharma [39] explored the size of various hybrid
system combinations using both artificial and conventional sizing methodologies. The
author of [40] mainly discussed multi-objective optimization approaches for hybrid energy
systems using energy sources from fuel cells, the sun, and wind. The author of [41] con-
centrated on employing artificial optimization approaches to examine, control, and model
HREs. Based on a series of probable accessibility, cost effectiveness, and emission-free
environmental evaluation findings, the solar-biomass hybrid system is acknowledged and
generally acceptable among various forms of HRES [42–44]. The use of solar and local
biomass in hybrid systems maximizes the use of both. It may be possible to enhance the
local energy structure by implementing these renewable energy technologies. In hybrid
solar-biomass energy systems, the majority of the biomass subsystems directly absorb
either forest biomass or agricultural waste.

A renewable energy generation system based on biogas and solar PV was described
by Tazvinga and Dzobo [45]. The major goal was to boost a solar PV system’s efficiency
throughout the day and also include battery storage and a biogas generator to make up
for its unpredictability. According to [46], the decentralized electricity supply based on
renewable energy has traditionally been viewed as a single technology with a finite quantity
of supply to satisfy essential needs. The current study’s objective is to combine solar energy
and biogas to provide electricity for an off-grid, rural community as an example. According
to Rahmana et al. [47], solar and biogas are insufficient to cover both thermal (cooking) and
electric load requirements. Biogas and hybrid solar energy applications are rather limited,
despite their appealing potential. It is critical to examine the economic merits of these two
resources, as well as their aptitudes to cope with needs and physical limitations, in order
to enable their integration into rural energy planning and stimulate distribution by fully
maximizing their potential. The maximum potential of solar PV energy and biogas may
be used for solar PV-biogas hybrid power generation. Ansori and Yunitasari [48] recently
explained how to electrify rural areas using a solar PV–biogas hybrid power generation
system. The literature does not critically compare the various sizing optimization strategies’
efficacy despite covering a wide spectrum of sizing optimization and a thorough study
that included the most recent single and hybrid sizing optimization methodologies and
software tools. A comparison of the efficiency of freestanding hybrid solar and wind
systems for remote locations and islands has not yet been published. HRES are of potential
use, especially for standalone systems, which are designed for remote and island areas
as well as grid-connected systems for unreliable national grid demands. Because of this,
the current study also intends to give a thorough review of recent advancements in single
algorithms, hybrid algorithms, and software tools for the ideal size of HRES and evaluation
characteristics including economic, reliability, environmental, and social considerations.
Furthermore, this research assesses the size optimization methodologies employed by
various researchers, and it has been thoroughly reviewed for standalone and grid-connected
HRES with various energy sources and storage systems.

This paper has been structured into the following sections: Section 1 contains a detailed
description of the components of a hybrid renewable energy system; Section 2 contains
the paper’s contribution; Section 3 contains the design parameters for a hybrid renewable
energy system; Section 4 contains energy production unit sizing optimization; Section 5
contains energy storage system integrations on HRES plants; and Sections 6 and 7 contain
the discussion, recommendations, and conclusions.
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Contribution of the Paper

This paper concentrated on hybrid renewable energy systems and their optimal sizes,
which can operate as either national grid-connected or remote electrification systems.
Considering the limitations and challenges identified in the above analysis, the contribution
is made in the following ways:

• A description of the problem of selecting the best size for hybrid renewable energy systems
• Examining the present state of the art in hybrid renewable energy systems and the

optimal size in relation to economic issues
• Organizing and categorizing existing research on the appropriate sizing of hybrid

renewable energy systems with energy storage systems
• Identifying current technical challenges with reference to the optimal sizing of hybrid

renewable energy systems with energy storage systems
• On the basis of numerous study fields, a full-scale constructive analysis of potential

optimal sizing strategies and optimization methodologies was examined, highlighting
objectives, major discoveries, and research gaps.

• Future research trends in the appropriate sizing of hybrid renewable energy systems
with energy storage systems are likely to emerge.

2. Overview of the Review Procedure

The review procedure for this research is depicted in Figure 1. There were four
primary steps in completing this study. In order to identify the problem, the first step was
an examination of feasibility constraints, components, objective functions, and methods.
The second step analyzed and classified existing research on the topic using significant
variables such as component, goal function, and approach. Shortcomings in this research
were emphasized and thoroughly spelled out. Furthermore, the third step identified and
discussed recent developments accordingly. The process’s fourth and final step discussed
future trends in optimal component planning for remote location power supply.
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3. Overview of HRES System Optimal Sizing

Some of the optimal sizing challenges associated with HRES systems are estimating
system components with the most capacity and at the same time considering feasibility and
reliability constraints. It’s worth noting that the HRES grids are expected to be implemented
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in this analysis, and only optimal generating and storage unit sizing is considered by using
optimization methods [49,50]. Such is the case where HRES networks are typically built
and developed by governments. Consequently, the distribution of grid installation on
HRES systems lacks sufficient data for cost analysis. In addition, generation and storage
units are generally located near rural locations, and the HRES grid has a far lower cost
than traditional power networks [14,46,51]. Figure 2 depicts a generic technique for HRES
system sizing optimization. The system’s input data was used to start the optimal sizing
algorithms for HRES system design. The HRES system setup was then defined. The sizing
problem was stated using the optimization algorithm. In the next step, the HRES system’s
functionality was assessed. After the HRES system became operational, the feasibility
limitations were checked for satisfactory results. The objective function was then calculated
to complete the optimization problem, provided all the constraints had been met.
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3.1. Hybrid Renewable Energy System Components

HRES has higher upfront costs, regional limitations, and a high degree of intermit-
tency [52]. ESS is required to tackle the intermittency issue, even if the cost of HRES is
decreasing [53]. However, the ESS cost is highly significant, especially when large-scale
renewable power plants require a lot of capacity. For a cost-effective and ecologically
friendly system, a hybrid diesel generator/HRES/ESS combination is recommended. A
multi-component hybrid remote area electrification system, on the other hand, is a complex
system that necessitates careful planning. In order to produce a reliable, cost-effective sys-
tem, the concept of optimal planning is paramount. A hybrid renewable system [49,52,53]
is the most cost-effective way to store and use natural power without interruption. Due to
their dependability and cost-effectiveness in supplying energy to rural and remote areas,
researchers have increasingly focused their attention on HRES integrated with ESS. Several
studies [54–58] have examined resource utilization and techno-economic performance. Two
or more renewable energy generation units, a backup fuel cell power generation unit that
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is optional, power conditioning units, and a storage unit are all components of an HRES
production configuration system [59–63]. The most common schematic diagram of an
HRES plant is shown in Figure 3, in which the load is fed first and foremost by solar and
wind generators, with the biogas generator serving as a backup. The battery ensures power
flow balance in the system as well as optimization.
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Components using fossil fuels to provide energy, such as diesel or gas generators,
contribute considerably to greenhouse gas emissions. A range of renewable energy compo-
nents has recently become available that can be incorporated with distant area electrification
and national grid interconnection systems. The most readily available and appropriate
components for far-flung electrical and national grid interconnected systems include solar
PV, wind turbines, hydropower, and biogas generators. Their use, however, is strongly
dependent on the geographic location of the research site [64–66]. Due to the abundance
of biomass in rural regions, biogas producers will attract greater attention in the near
future [66]. Figure 4 presented the system components in HRES systems.
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3.2. Design Parameters of HRES System

When constructing a hybrid renewable energy system, the most important elements to
consider are cost and reliability. These variables are related to emissions and technological
challenges. The type of objective function utilized was based on the type of investiga-
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tion. Often times, economic objectives take precedence. If the project’s budget is limited,
reliability becomes a major problem. Emissions have drawn a lot of attention in several
situations. Because the objectives are so different, optimal sizing in hybrid renewable en-
ergy systems can be achieved by using optimization techniques to solve a single-objective
or multi-objective optimization issue. A compromise between the objective functions is
required for multi-objective issue solutions expressed as Pareto fronts [67].

As shown in Figure 5, the different categories of objective functions are presented.
Nowadays, most researchers give priority to economic factors, then reliability factors, and
end with technical and emission considerations. Each of the above objective functions’
categories are explained in detail below.
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3.2.1. Objective Functions of Finance

Financial goals include the net present cost (NPC), levelized cost of energy (LCOE),
total annual cost (TAC), simple payback period (SPP), and internal rate of return (IRR).
The NPC of a diesel generator is calculated by adding up all current capital, maintenance,
replacement, salvage, and fuel consumption costs [68]. The capital recovery factor is
multiplied by the NPC over the system’s yearly energy consumption to determine the
LCOE [69]. To calculate TAC, yearly construction and maintenance costs are compounded
by annual fuel prices [70]. The SPP measures how long it will take for yearly profits to cover
component capital expenses [71]. The discount rate at which the net present value (NPV)
of all future cash flows is zero is known as the IRR [72]. The mathematical formulation of
each economic objective function for the hybrid renewable energy system size is as follows:

(a) NPC: The present value of all benefits and costs that will occur throughout the project’s
lifetime is known as the net present cost [73].
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F1 = Minf(NPC) = NPCk + NPC f (1)

NPCk = PCC + PCm + PCr − PCs (2)

NPC f =

(
(1 + r)n − 1

r(1 + r)n

)
×
(

T

∑
t=1

(
f (t).C f

))
(3)

(b) LCOE: It represents the system’s entire yearly cost per kWh of useable electrical
energy [74].

F2 = Minf(LCOE) =
NPCk + NPC f

Ep
× r(1 + r)n

(1 + r)n − 1
(4)

(c) TAC: It is the annualized cost of all power system components, which includes
replacement and fuel expenses in addition to capital, operating, and maintenance
costs [75].

F3 = Minf(TAC) =
T

∑
t=1

(
f (t).C f

)
+ ACk (5)

(d) SPP: It is the amount of time needed to recoup an investment’s cost [73].

F4 = Minf(SPP) =
PCc

AP
(6)

(e) IRR: In a discounted cash flow analysis, it is a discount rate that sets the net present
value (NPV) of all cash flows to zero [76].

F5 = Max f (IRR) (7)

− PCc +
Y

∑
y=1

MY × (IRR)y = 0 (8)

3.2.2. Objective Functions of Reliability Evaluation

The following are some of the most common measurements and target functions for
HRES optimal sizing dependability.

1. Loss of power supply probability (LPSP)
2. Expected energy not supplied (EENS)
3. Loss of load expectation (LOLE),
4. Loss of energy expectation (LOEE)
Further, the system average interruption frequency index (SAIFI) and system average

interruption length index (SAIDI) are two other dependability indices that have received
less attention for optimal sizing of HRES. The likelihood of an unmet load over the whole
energy demand of a grid-connected or stand-alone hybrid renewable energy system is
known as the LPSP [77]. The EENS is the energy that is supposed to be provided by a
hybrid renewable energy system but is not [78]. The LOLE, also known as the loss of load
probability (LOLP), is the number of hours per year that the energy exceeds the capacity of
the HRE generation system [79]. The LOEE [80] stands for the total energy not delivered
by the grid-connected or stand-alone hybrid renewable energy system. Over the course
of a year in the HRES project, SAIFI can be defined as the average number of times a
client witnesses power outages. Throughout the life cycle of the project, the SAIDI index
measures the total average customer’s interruption time. For hybrid renewable energy
systems, we explain the mathematical calculation of reliability objective functions.
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F1 = Minf(LPSP) =
Ep + Ed + Eb,ch − Ere − E f − Eb,dis

Ep
(9)

F2 = Minf(EENS) =
T

∑
t=1

LPDP (10)

F3 = Minf(LOLE) =
T

∑
t=1Ses

∑ FsTS (11)

F4 = Minf(LOEE) = Ep + Ed + Eb,ch − Ere − E f − Eb,dis (12)

F5 = Minf(SAIFI) = ∑ λi Ni

∑ Ni
(13)

F6 = Minf(SAIDI) = ∑ Ui Ni

∑ Ni
(14)

3.2.3. Objective Functions of Emission and Technical

The following are the other groups of objective functions:
1. Renewable factor (RF)
2. Carbon emission (CE)
3. Battery longevity (BL)
4. Customer comfort level (CCL)
5. Discharged energy (DE)
The RF shows how much of the energy demand is fulfilled by HRES [81]. The CE

represents the total quantity of CO2 emitted by the envisaged HRES system over the
project’s duration [82]. The BL is the battery’s lifespan in HRES that has been shortened
due to deterioration. In order to avoid battery damage and thus increase battery lifetime,
a proper installation plan should be developed. The mathematical formulas for emission
and technical objective functions are offered in Equations (15)–(19) in the HRES optimal
sizing issue. However, the demand response solution for this study has an impact on CCL
formulation. The number of hours required to achieve the greatest CCL might be decreased,
for instance, if load shifting is considered. The inverter management system, which reduces
power fluctuations and provides a consistent power supply, is taken into consideration
when calculating the EFR. For the optimum size of a hybrid renewable energy system, the
emission and technical objective functions are mathematically formulated.

F1 = M inf(RF) =
(

1 −
E f

Ep

)
× 100 (15)

F2 = Minf(CE) = α + β
T

∑
t=1

Pf (t) + γ

(
T

∑
t=1

Pf (t)

)2

(16)

F3 = Max f (BL) = 1 − Db (17)

F4 = Max f (CCL) (18)

F5 = Minf(DE) = Ere + E f + Eb,dis − Ep − Eb,ch (19)

3.3. Consideration of Feasibility Constraints

There are two types of feasibility restrictions for hybrid renewable energy system
sizing. These include (1) component-related restrictions and (2) system-level technological
constraints. The feasibility constraints on remote area electrification and the optimal sizing
difficulties of the national grid interconnection system are shown in Figure 6.
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4. Sizing Optimization of Energy Production Unit

References [83–85] provide a comprehensive examination of the critical unit sizing
difficulty for hybrid renewable energy systems. It is a technique for estimating hybrid
system component sizes that also lowers system costs and increases system reliability [86].
Oversizing can raise the cost of the system, whereas under-sizing could lead to a power
supply breakdown or inadequate power being delivered to the load. There are several
techniques for sizing the appropriate hybrid renewable energy system. Among the various
options, there are two that are more common and commonly used.

(1) Simulation and optimization software
(2) Meta-heuristic optimization techniques

4.1. Simulation and Optimization Software

Simulation tools are the most widely utilized instruments for assessing the perfor-
mance of hybrid systems. By evaluating the efficiency and cost of energy generation of
various system configurations using computer simulations, the ideal design may be found.
Just a few of the software tools that may be used to create hybrid systems are HOMER,
HYBRID2, HOGA, and HYBRIDS. The HOMER (Hybrid Optimization Model for Electric
Renewables) tool from the National Renewable Energy Laboratory is easy to use. It as-
sesses hybrid renewable energy using hourly simulations and environmental data, then
optimizes the system using the net present value. Many studies utilizing HOMER [87]
have been undertaken on the best design of hybrid renewable energy systems without ESS.
HOMER was used to optimize a diesel generator-PV-Wind-battery hybrid [88], a PV-Wind
hybrid [89], a mini-hydro-wind hybrid [90], a solar-biomass hybrid [91], and a hydro-wind-
solar hybrid [92]. The PV-WT-DG-biogas system was sized by HOMER for a community
service power application since it is simple to operate [93]. In [94], the researcher optimizes
the design of a biogas generator for a hybrid remote area electrical system in a distant
village with a WT-PV-DG. Due to the intermittent nature of solar irradiation and wind
speed, this hybrid system was unable to deliver a steady supply for the connected demands.
To address the dependability issue, hybrid renewable energy systems should incorporate
energy storage technologies.

Numerous academics are looking at how to best construct hybrid renewable power
plants using HOMER software, integrating energy storage devices with remote region
electrification systems, and linking the national grid system. The ideal HRES system size
determined by the HOMER software optimization tool is summarized in Table 1. The
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optimal WT-PV-DG-BES size with the optimal levied energy cost was developed for use
in islands, rural remote locations, and off-grid communities [95–98]. The PV-WT-BES
system is the most commonly discussed method for remote area electrification and grid
interconnection [99]. Other technologies used in clean distant regions for electricity and
national grid connectivity, in addition to PV and WT, include fuel cells, super- and ultra-
capacitors, and pumped hydro. Long-term and short-term energy storage systems are
divided into two categories. Long-term energy storage includes pumped hydro and fuel cell
systems, whereas short-term storage includes batteries and ultra- and super-capacitors. The
majority of studies recommended combining solar with long-term energy storage systems
on a large scale [100]. HESS has been extensively researched for remote electrification
and national grid connectivity systems. In South Africa, a hybrid FC-SC HESS with a
photovoltaic system was used for commercial remote loading [101]. With a hybrid PV
and WT system, the optimal size was found to be a combination of BES and FC [102]. To
create a clean hybrid system with more electricity supply flexibility, a biogas generating
unit has been combined with a PV-WT-BES system [103]. In [104], an agricultural farm’s
biomass-biogas system was sized to perfection. HOMER [105] was also used to examine
the use of biogas-producing units in conjunction with hydropower in clean remote area
electricity systems as well as national grid connectivity systems.

Table 1. Optimal sizing of HRES systems by using HOMER software optimization tool.

Ref. Decision Variable Optimization Method Objective Function Design Constraints Electricity Tariff

[106] Wind/PV/FC/BES Homer Pro NPC, COE, initial
investment cost, and
operating cost

Power balance and budget Time of use

[107] PV/wind/Biogas/FC HOMER Pro COE and NPC Power balance and budget Time of use

[108] PV/Wind
/BES/DG

HOMER NPC, COE, and RF Load demand, diesel fuel price,
project lifetime, and interest
rate

Time of use

[109] PV/Wind/
BES/DG

HOMER NPC and LCOE Electricity production,
emission, operating cost, fuel
consumption

Time of use

[110] DG/PV
/Micro hydro

HOMER Operating costs and return
on capital

Power balance and budget Stepwise
Real time
pricing

[111] PV/Biomass
/BES/DG

HOMER LCOE Required electrical load and
available energy resources

Time of use

[112] Wind/DG/PV/BES HOMER NPC Single criterion-total net
present cost

Not specified

[113] PV/Wind/
DG/BES

HOMER PRO NPC and COE Capital cost, energy generated,
excess energy, unmet load, life
cycle emission, renewable
penetration

Time of use

[114] PV/wind
/BES

HOMER, QRod™&
PROSPER™

NPC and LCOE Load demand, capital cost,
available energy resources, and
energy generated

Not specified

[115] PV/DG/BES HOMER Pro COE and NPC Load demand, capital cost,
available energy resources, and
configuration of RES

Time-of-use

The essential strength of each study project is the authors’ strategy to deal with the
community’s issues with a shortage of power, as mentioned in the review articles in Table 1.
According to the decision variables, every hybrid system, excluding references to the
community’s issues with a shortage of power, as mentioned in the review articles in Table 1,
according to the decision variables, has a diesel generator. Diesel generators are not only
not environmentally friendly, but they are also not economically viable. Besides, BES is not
completely economically feasible. A future study should take all of the aforementioned
features and drawbacks into account and make sure to address them in the brand-new,
exclusively green hybrid system configuration that will be used on the system. Additionally,
to deal with both the objective function and the constraints, the future researcher should
handle the issues utilizing metaheuristic optimization approaches.
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4.2. Meta-Heuristic Optimization Techniques

It is critical for designers to develop a practical optimization technique for determining
the best system size and configuration for hybrid renewable power plants. For constructing
a hybrid renewable energy system, there are numerous optimization techniques available,
the most popular and accurate of which is metaheuristic optimization. Metaheuristic ap-
proaches are commonly used to achieve appropriate HRES sizing. Existing metaheuristic
technique studies are categorized into one or more objective optimization studies. The
reference number, decision variables, optimization methods, objective function, design
restrictions, and electricity tariff of extant metaheuristic studies on single-objective and
multi-objective optimal design of HRES are shown in Table 2. Metaheuristic approaches
were used to size the hybrid PV-WT-DG-BES system, which lowers the cost of energy pro-
duction [116]. The LPSP was employed as a constraint to increase dependability [117–120].
The number of components and the power balance between generation and consumption
were the most commonly used feasibility restrictions. However, the researchers suggested
a system with a PV-WT-DG-BES that was both cost- and size-optimized [121,122]. Numer-
ous methods were examined for improving the RF, unit commitment, and proportion of
renewable energy [123–127]. The aforementioned studies were peer-reviewed and have
only one objective.

Furthermore, Table 2 demonstrates that the reference numbers represent the single-
objective optimal design of a hybrid renewable power system, whereas the remaining
references represent the multi-objective optimal design of a hybrid renewable power
system. Many researchers have economic goals as their first priority. Furthermore, objective
functions linked to pollution and reliability were the most commonly used. The researcher
also recommended that three objective functions, such as renewable factor (RF), carbon
emission (CE), and life cycle cost (LCC), be evaluated jointly to build a hybrid renewable
power plant ideally [127]. However, because CE and RF belong to the same type of emission-
minimization target functions, it is unnecessary to consider them for optimal sizing. The
researcher in [128] took into account three objective functions as well as new limitations
such as the WT hub height and PV tilt angle.

As stated in the previous two paragraphs, metaheuristic approaches are used as
a single objective and a multi-objective for the optimal design of a hybrid renewable
power plant in a clean energy production system. However, in the best design of a hybrid
renewable power plant, the emission objective functions are removed as a result of the
limited diesel generators available for clean energy production schemes. In [129], the
researcher designed a WT-PV-BES system optimized in a group of twenty households,
resulting in cost-effective and emission-free energy generation with reduced energy costs.
In other studies, such as [130], four distinct algorithms were utilized to examine the
performance of the metaheuristic algorithm for optimal sizing of hybrid renewable power
plants. Using a PV-thermal system, [85] evaluated the supply of thermal loads in addition
to the electric loads. Furthermore, a natural gas backup boiler was optimized in addition
to the renewable system [131]. Both the hybrid grey wolf optimizer-sine cosine approach
and the modified bee algorithm were used to determine the ideal HRES size [132,133].
Particle swarm optimization was used to improve the PV-WT-BES and biogas-PV-WT
systems [134,135]. A PV-WT-PHS system was created in [136] to provide loads in a seaside
village. Due to the abundance of water for PHS, such a system is extremely effective
in coastal regions. The method with the most popular and greatest applications was
the particle swarm optimization technique, which had several objectives. The current
research considers objective functions such as volatility [137] and minimization of the total
energy cost and loss of power supply probability [138]. The most commonly studied HRES
configurations were WT-PV-FC [139], WT-PV-PHS [140], WT-PV-BES [141], WT-PV-FC [142],
and PV-FC-BES [143]. However, reference [144] presented an improved two-component
PV-BES system.
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Table 2. Single and multi-objective capacity optimization for HRES with meta-heuristic optimization
techniques.

Ref. Decision Variable Optimization Method Objective Function Design Constraints Electricity Tariff

[145] PV/Wind/
FC

Hybrid firefly-harmony
search optimization

NPC Power balance and
techno-economics

Time of use

[146] PV/Wind/
FC

Hybrid grey wolf
optimizer-sine
cosine algorithm

LCC Time of use

[147] PV/wind/
BES/PHS

Four algorithms NPC Number of components,
battery’s energy and SOC

Time of use

[148] PV-
Thermal/WT/micro-
turbine/
EES/Thermal energy
storage/Natural gas
boiler

Evolutionary
PSO

TAC Investment, replacement, fuel,
and operation and
maintenance costs. Energy
management system prioritizes
the application

Time of use

[149] PV/wind/
/PHS

Genetic algorithm LPSP Power balance and
techno-economics

Time of use

[150] PV/Wind/
PHSS

Whale
optimization
algorithm
(WOA)

COE Power balance and budget Time of use

[151] PV/wind/
BES

Crow and particle
swarm as a hybrid

Reduction of energy
production cost

Distribution of energy
supply-demand planning

Time of use

[152] PV/Wind/
Biogas/DG/BES

Hybrid
PSO-GWO

COE and LPSP Optimal configuration
according to the cost

Time of use

[153] Wind/PV
/BES

Genetic algorithm-III
(NSGA-III)

Total cost, end-user
satisfaction loss, and
tie-line power
fluctuation

Power balance and budget Time-of-use

[154] PV/Wind/FC/BES Proximal policy
optimization (PPO)

Overall economic cost
saving and carbon
emission reduction

Power balance and
techno-economics

Time of use

[155] PV/Wind/
BES/DG

Multi-objective
multi-verse
optimization (MOMVO)

COE, RF, and LPSP Required electrical load and
the techno-economic feasibility

Time-of-use

[156] Wind/PV/FC/
BES

WOA COE, NPC, and LPSP Produce an adequate electrical
supply to the load demand
with low cost

Time-of-use

[157] PV/Bio-waste
/FC

WOA NPC) and LPSP Electrical load, optimal
configuration, and
techno-economic feasibility

Not specified

[158] WT/PV/Biomass/Pump-
Hydro

WOA COE and LPSP Reliability and operational
constraints

Time of use

[159] PV/Wind/
BES/DG

NSGA-II NPC, COE, and CO2
emissions

Power balance and
techno-economics

Time of use

The researchers’ approach to addressing the community’s problems with a lack of elec-
tricity, as noted in the review articles in Table 2, is the key strength of each research project.
Regarding its economic and environmental implications, references [147], [149], [150], [158],
and [159] are significantly superior to the other articles provided. Diesel generators are
not both economically and environmentally feasible in a hybrid system. BES is also to-
tally uneconomically viable. Future research should include the aforementioned benefits
and drawbacks and make sure to address them specifically in the green hybrid system
configuration that will be employed on the system.

5. Application of the Integration of Energy Storage System in HRE Plants

The main disadvantage of using renewable energy is limited to the fact that it cannot
deliver reliable electricity as a result of its intermittent nature [160]. Energy storage systems
(ESSs) are the most effective way to store power during off-peak hours and supply energy
during peak hours [161]. For the load to get an uninterrupted supply of power, storage
technology is crucial and required [162]. Alternatives for energy storage in HRES include
CAES, PHS, FWES, SC, SMES, and BES.
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These devices are often employed in large-scale networks, which require significant
capital. However, they can be used to ensure a consistent energy supply during worse
HRES conditions [163]. One of the most widely utilized ESSs is the battery energy storage
system (BESS) [164]. Consequently, combining HRES and BESS is a potential on- and
off-grid solution, not just in India but internationally. MGs have become more popular in
recent years as people have become more interested in using them in power distribution
networks using small-scale HRES. Moreover, the microgrid idea has been regarded as a
superior alternative for countryside electrification, and many hybrid MG designs for HRES
have been given in the literature [165,166]. MGs are frequently recognized as the most
dependable, consistent, economical, and environmentally friendly energy sources. An MG
is a standalone electrical system that may provide electricity to a household or community.
The abundance of HRES makes utilizing these sources as a remote area electrification option
a strong prospect [167]. Hybrid configurations, particularly MGs or HRES, can combine
energy conversion systems such as PV and wind turbines. These hybrid topologies will
reduce generation, investment, and storage system size fluctuations and simultaneously
boost system reliability and performance [168]. As a result, the ESSs offer backup energy
when the HRES’ output power fluctuates. The HRES’s resilience is improved, and total
expenses are reduced by the integration of the ESS [169]. Table 3 surmises the optimal sizing
of HRES with ESS systems by using meta-heuristic optimization techniques. Furthermore,
the HRES’ reliability is ensured by its continuous power delivery to the load [166]. Using
a diesel generator (DG) ensures uninterrupted power loading during HRES. Renewable
energy-based MGs can run in island mode, reducing reliance on fossil fuels. It also provides
significant economic and environmental benefits [169]. For this reason, localized HRES
integrated with ESS is a better solution for satisfying the energy demands of load centers in
a reliable way.

Table 3. Optimal sizing of HRES with ESS by using meta-heuristic optimization techniques.

Ref. Decision Variable Technique Objective Function Constraints Electricity Tariff

[170] Wind/PV/
BES

Firefly-inspired
algorithm

COE Energy of battery,
number of components, and
load dissatisfaction rate

Time of use

[171] Biogas/PHES
/PV/BES

Water cycle
algorithm

NPC LPSP, number of
components, SOC, upper
reservoir volume

Time of use

[172] WT-PV-FC Artificial bee swarm
optimization

LCC and LPSP
evaluation

Load interruption
probability, number of
components, energy at
tank

Time of use

[173] PV-BES Mutation adaptive
differential
evolution

LCC, LOLP &
LCOE

SOC Time of use and
stepwise
real time
pricing

[174] PV/wind/BES Multi-objective
grey wolf
algorithm

COE, LPSP, DE SOC Time of use

[175] PV-WT-BES-PHS Multi-objective
grey wolf A.

COE, LPSP Energy of battery and
pump-hydro storage

Time of use

The researchers’ approach to addressing the community’s power problems with inter-
mittent forms of electricity production like solar and wind, as noted in the review articles
in Table 2, is the key strength of each research project. In terms of economic implications,
BES outperforms the other ES system significantly. In addition, PHS, FC, and BES do not
respond quickly when there is a peak load occurring in milliseconds, so researchers should
include fast response ES systems like SMES and FWES on the intermittent HRES. Future
research should include the aforementioned benefits and drawbacks and make sure to
address them specifically in the green hybrid system configuration that will be employed
on the system.



Energies 2023, 16, 642 15 of 26

The technical and financial aspects of various energy storage systems used for re-
newable and hybrid energy alternatives are shown in Table 4. People often think that
dispatchability, efficiency, durability, availability, quick response time, energy capital cost,
and so on are the most important things for a storage system to have. In contrast to battery
storage technology, which can only make 0 to 40 MW of energy available, the PHES can
make 100 to 5000 MW of energy available. Compared to thermal and chemical energy
storage methods, it is more efficient. The PHES’s longer lifespan than any other storage
system is one of its best qualities. When compared to other storage methods, PHES has
a low capital cost for energy. According to Hino and Lejeune [176], PHES plants have
quick start-up and shut-down times, quick load changes, the ability to handle frequency
changes, and stable voltage. Nazari et al. [177] discuss that PHES systems are useful tools
for making sure that there is always power. In general, PHES has a much lower LCOE
than other ways to store energy. Based on these qualities, it’s clear that the PHES system
is better than all other storage systems. In [178], Zhang et al. proposed the Mo6+–P5+
co-doped Li2ZnTi3O8 anode for Li-storage in a wide temperature range and applications
in LiNi0.5Mn1.5O4/Li2ZnTi3O8 full cells. In [179], Chen presented research on the use of
digital twin technology for collaborative innovation of important common technologies
in the new energy vehicle industry. Future low-carbon and zero-carbon fuels for marine
engines were studied in [180] from the perspective of thermal efficiency. In [181], Liu et al.
conducted a numerical analysis of the ammonia combustion and emission properties in a
low-speed two-stroke marine engine. A thorough analysis of smart distribution network
situation awareness for high-quality operation and maintenance was published by Ge et al.
in [182]. Li et al. presented the digital economy’s driving mechanism in [183] based on a
regulation algorithm for the growth of low-carbon sectors. The improved algorithm of drift
compensation for olfactory sensors was presented by Lu et al. in [184]. The semi-supervised
extreme learning machine approach based on the new weighted kernel for machine scent
was introduced by Dang et al. in [185]. The asymmetric encoder-decoder model for Zn-ion
battery lifetime prediction was introduced by Lu et al. in [186].

Table 4. Economical and technical criteria for various energy storage technologies.

ES Technology Capital Cost
($/kW)

Power
Rating
(MW)

Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Life Cycle Response
Time

Life Span Efficiency (%) Ref.

Lead Acid
Battery

300–600 0–40 24–45 180 1500–2000 5–10 ms 3–12 70–90 [187]
[188]

SC 100–300 0.01–1 0.1–5 800–2000 100,000+ <5 ms 10–20 85–95 [189]
[190]

FWES 110–330 0.01–10 10–30 400–1500 10,000–
100,000

seconds 15–20 70–95 [191]
[192]

FC 500–10,000 0.001–50 300–1200 500+ 20,000+ min 5–20 20–50 [193]
[194]

CAES 400–800 5–300 30–60 - 8000–12,000 min 20–40 70 [195]
[196]

SMES 200–300 0.1–10 0.5–5 500–2000 100,000+ <5 ms 20–30 90–98 [197]
[198]

PHS 600–4300 100–5000 0.5–1.5 - 10,000–
30,000

min 30–60 65–85 [199]
[200]
[201]

6. Discussion and Recommendations

With increased electricity demands and the intermittent nature of single renewable
energy sources, it is increasingly difficult to provide dependable power to linked loads. By
minimizing maintenance expenses, which decrease the system’s overall operating costs,
an effective and long-lasting energy storage technology can address the issue of HRES’s
intermittent nature. Simultaneously, hybridization, in conjunction with energy storage
technologies, can address the intermittent nature of HRES. Energy storage possibilities in
HRES include the following options:
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1. Compressed air energy storage (CAES)
2. Pumped hydro energy storage (PHS)
3. Hydrogen fuel cells (FC)
4. Flywheels
5. Super capacitors (SC)
6. Superconducting magnetic energy storage (SMES)
7. Battery banks (BB)
PHS units have different advantages over CAES, SC, SMES, FC, flywheels, and BB

units, such as lower prices and less environmental impact.
PHS is the most effective way to store media among several options. It has several

advantages over traditional energy storage systems, including fast response time, quick
starting and stopping, ease of handling load changes, high-efficiency power supply at a base
load power plant, and decreased discharge losses. In both experimental and computational
studies, PHS has been used as a bulk energy medium for HRES by a number of researchers.
Numerous studies have established the efficacy of PHS in various configurations. It is
considered to be one of the most reliable and technologically possible off-grid as well as
grid-connected HRES power sources for use in any electricity demand sector.

The solar-wind-PHS combo is considered a reflection of enormous solar and wind
potential due to increasing installed capacity and peak demand and supply. The COE, LPSP,
environmental impact, and payback period may all be decreased using the integrated sys-
tem. Researchers have also found that combining a solar-biogas system with a PHS system
provides advantages such as lower investment costs, improved operating performance,
and smooth power generation. Furthermore, hybrid systems that are connected to the grid
have the best COE in the majority of circumstances. The reasons can be summed up in
the lower cost of kWh gained from the grid compared to the initial expenditures obtained
from renewable energy sources. However, acceptable rate reductions in the initial prices of
renewable energy have been observed in recent years.

PHS is now combined with PV-wind-biogas-based HRES for a continuous and stable
power supply, with an internal combustion engine acting as a backup energy source.
Hybrid-PHS configurations were also researched by several researchers.

The integrated system offers improved round-trip efficiency, enhanced power supply
dependability, decreased revenue losses, cost savings, a low investment cost, maximum
accessible energy, a greater life span, and fewer greenhouse gas emissions when compared
to a battery and other storage systems. Prior studies have revealed that PHS and freshwater
resources appear to be among the most practical HRES storage solutions.

The following suggestions have been provided to overcome the above challenges to
optimal sizing of HRES adoption with ESS integration:

• The current state of HRES technology, interconnected with ESS, can address many of
the issues that the prior technology had, such as reliability, efficiency, and capacity.
The scope of this technology’s ongoing development for future use in MG technology
has been determined. Energy sizing, costing, safety, and effective management are
increasingly the focus of research.

• For HRES and ESS system components to be sized optimally, intelligent techniques
(meta-heuristic approaches) must be combined with the proper control settings, or
more effective methods must be developed. It may be said that the hybrid GWO-
PSO and WOA optimization strategies are the best for achieving the aim of an HRES
combined with ESS that is dependable, economical, and environmentally benign.

• The components of renewable energy and the life cycle of storage devices are de-
termined by the materials utilized. Capacity, energy and power density, life cycle,
corrosiveness, and charging and discharging properties may all be significantly in-
fluenced by the materials. With better energy efficiency, reliability, and stability, a
cost-effective long-term advanced technology can lead to the material selection of
HRES and ESS in MG applications.
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• To combine HRES with ESS and the current electrical power network, the power elec-
tronic interface (PEI) can be employed. Because it possesses the requisite organization
for power conversion, PEI has a variety of features. Size, ripples, expense, flexibility,
and efficiency are all shortcomings of the current PEI system.

• Sharing the power allows for the optimal distribution of power in the HRES with
the ESS structure. PHS, FC, CAES, and Li-ion batteries are just a few of the ESS that
can be modeled for large-scale integration. Thermal energy storage systems, SMESs,
flywheels, and flow batteries all perform well for medium-scale energy management.
A quality management system could be utilized to boost the overall efficiency and
cost of present ESS management for HRES applications that have consistent and
reliable quality.

• Different ESS technologies are quite large and expensive in terms of size and cost. An
ESS that is too large is not appropriate. Installation and maintenance costs are included
in the price. It also significantly contributes to storage permanence. Their integration
can boost the storage system’s capacity. Implementing a comprehensive energy storage
policy would be a big issue for both renewable and conventional networks.

• In order to improve system stability and dependability and simultaneously lower
power quality concerns, HRES requires an ESS that combines the traits of a high-power
and a high-energy storage system. High-energy devices have a slower reaction with
a longer duration, but high-power ESS devices benefit from rapid responses at high
rates for a short period of time. The advantages of achieving excellent power quality
with linked loads may be realized by combining these two kinds of ESSs.

• A predetermined operating policy should be implemented to assess the site’s long-
term viability. Many restrictions can be overcome with technological advancement.
Transmission losses can be reduced by choosing the right PHS site. Additionally,
PHS’s integration with solar farms that are almost entirely self-sufficient will reduce
transmission costs between the two businesses. In order to boost the new PHS’s soci-
etal acceptance, it is important to spread awareness about the project’s efficiency and
viability as a source of power. Furthermore, community communication and consulta-
tion can help increase public interest. The success narratives of successfully completed
projects must be shared with the public in order to raise awareness and recognition.

• The emission of greenhouse gases and other hazardous emissions decreases as the
amount of energy supplied by renewable sources grows. Hybrid ESS can incorporate
intermittent HRES into the power system, lowering fuel usage and hazardous emis-
sions. Despite the fact that 100% renewable energy production is expensive, experts
are working to lower installation and maintenance costs.

7. Conclusions

In this work, the state of the art for HRES system optimum sizing was investigated.
The current research on the subject was divided into categories using HRES, optimization
methods or software optimization, and single- or multi-objective problems. The most recent
advancements in HRES integration with ESS system optimal sizing, as well as current
issues, were reviewed. Future views were offered to scholars as a way of highlighting new
research topics. The following are some of the main results of this review paper.

Based on many research findings, FITs for loads in grid-connected HRES should be
implemented by sending surplus energy to the grid system. This increases the proportion
of HRES that uses renewable energy resources. Consumers can therefore sell their excess
energy to the grid through the FIT, which lowers electricity costs and generates revenue for
the community.

To optimize the size of components based on economic, reliable, and emission func-
tions, new meta-heuristic optimization approaches and software tools are needed.

Meta-heuristic optimization techniques are more efficient for sizing HRES. However,
current software tools, such as the HOMER software family, are unable to address multi-
objective issues. Additionally, demand-side management response systems are difficult to
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deploy with this software. As a result, software could be deployed, offering designers the
flexibility to size HRES systems more efficiently.
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Abbreviations

ACk Annual Cost of Components MG Micro-Grid
AP Annualized Payment of HRES MY Net Cash Flow For The Year
CAES Compressed Air Energy Storage N Project’s Lifespan
C f Fuel Price Ni Number Of Customers for Site
COE Cost Of Energy NPC Total Net Present Cost
Cr Cost of Fuel NPC f Fuel Usage
Db Battery Capacity Degradation From Charging/Discharging Cycles NPCk Grid Integrated or Remote System Components
DG Deiseal Generator NPV Net Present Value
DP Unmet Load Duration PCC Capital Costs Present Value
Eb,ch Total Energy Output from Charged Battery PCm Maintenance Costs Present Value
Eb,dis Total Energy Output of Discharged Battery PCr Replacement Costs Present Value
Ed Total Dumped Energy PCs Salvation Costs Present Value
EENS Expected Energy Not Supplied Pf Power Generated by the Diesel Generator
E f Diesel Generator Energy Output PHS Pumped Hydro Storage
Ep Overall Energy Demand PV Photo Voltaic
Ere Total Output From Renewable Energy Sources R Discount Rate
ESS Energy Storage System S All Loss of Energy States
f Fuel Utilization SAIDI System Average Interruption Length Index
FS Probability Of Meeting States SAIFI System Average Interruption Frequency Index
HOMER Hybrid Optimization Model for Electric Renewable SMES Superconducting Magnetic Energy Storage
HRES Hybrid Renewable Energy Sources SPP Simple Payback Period
IRR Internal Rate Of Return T Project Time Duration
LCC Life Cycle Cost TAC Total Annualized Cost
LCOE Levelized Cost of Energy TS Loss of Load Duration
LOLE Loss of Load Expectation Ui Duration Of Power Outage
LOEE Loss of Energy Expectation αβγ Approximate Emission Coefficients
LP Average Yearly Load λi Rate of Power Interruption
LPSP Loss of Power Supply Probability
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