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ABSTRACT Retinitis pigmentosa (RP) is a group of genetic retinal disorders characterized by progressive
vision loss, culminating in blindness. Identifying pigment signs (PS) linked with RP is crucial for monitoring
and possibly slowing the disease’s degenerative course. However, the segmentation and detection of PS
are challenging due to the difficulty of distinguishing between PS and blood vessels and the variability in
size, shape, and color of PS. Recently, advances in deep learning techniques have shown impressive results
in medical image analysis, especially in ophthalmology. This study presents an approach for classifying
pigment marks in color fundus images of RP using a modified squeeze-and-excitation ResNet (SE-ResNet)
architecture. This variant synergizes the efficiency of residual skip connections with the robust attention
mechanism of the SE block to amplify feature representation. The SE-ResNet model was fine-tuned to
determine the optimal layer configuration that balances performance metrics and computational costs.
We trained the proposed model on the RIPS dataset, which comprises images from patients diagnosed at
various RP stages. Experimental results confirm the efficacy of the proposed model in classifying different
types of pigment signs associated with RP. The model yielded performance metrics, such as accuracy,
sensitivity, specificity, and f-measure of 99.16%, 97.70%, 96.93%, 90.47%, 99.37%, 97.80%, 97.44%, and
90.60% on the testing set, based on GT1 & GT2 respectively. Given its performance, this model is an
excellent candidate for integration into computer-aided diagnostic systems for RP, aiming to enhance patient
care and vision-related healthcare services.

INDEX TERMS Retinitis pigmentosa, pigment signs, retinal diseases, ResNet, deep learning, data
augmentation.

I. INTRODUCTION
Retina is ranked as one of the most energetically active
tissues in the human body, and various illnesses can lead
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to alterations in its structure. These alterations can be
detected to aid in diagnosis. Fundus images and optical
coherence tomography (OCT) are valuable methods for
examining eye conditions like retinitis pigmentosa (RP), dia-
betic retinopathy, macular degeneration, glaucoma, macular
edema, and macular dystrophy [1]. RP is a prevalent group
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of hereditarily retinal disorders. It occurs due to gene abnor-
malities that result in the degeneration of photoreceptor cells.
RP typically emerges during childhood, and unfortunately,
there is currently no cure available to halt the disease’s
progression [2]. The photoreceptor cells constitute a network
of interconnected neurons that comprise the light-sensitive
tissue present in the inner area of the eye. These tissues
and cells play a critical part in the initial stages of visual
processing. Retinopathy and the resulting impairment of
retinal function are prevalent causes of blindness. The initial
indicators of RP are usually loss of sight at night and loss
of vision in the mid-peripheral areas, which can eventually
lead to full loss of sight [3]. In the initial steps, the color
fundus images may exhibit varying characteristics, ranging
frommild deterioration tomore prevalent pigment epithelium
dystrophy. PSs can be observed in the middle peripheral
regions initially and later extend to the next pole of the
retina [4].
RP can be visualized in retinal images as pigmented

areas located on the posterior part of the retina, which may
enlarge and migrate over time along with accompanying
symptoms. Both OCT and color fundus imaging have been
instrumental in analyzing the state of RP [5]. While visual
analysis by doctors is often relied upon for disease diagnosis,
it may not always yield optimal results due to factors
such as lack of experience, fatigue, variations in shape and
texture, and poor image quality [6]. Already, the health-
care industry is benefiting from artificial intelligence-based
algorithms and semantic segmentation. Consequently, deep
learning approaches have emerged as a valuable technology
for disease detection and examination [7]. Based on the
information available in the relatedwork, there is a significant
scarcity of research regarding the automated detection of
presumed diagnoses solely through the analysis of color
fundus images. In contrast, the diagnosis performed using a
fundus camera offers several advantages, such as enhanced
convenience, reduced invasiveness, ease of repetition, and
quicker results [8].

Various advanced models of CNN are widely used in
medical image processing or industrial images such as
complementary adversarial network-driven SDD (CASDD)
comprises segmentation and an inventive complementary
discriminator mechanism for encoding and decoding, featur-
ing a specially crafted loss measurement to capture defect
boundaries and enhance feature representation [9]. Another
advanced model used a transfer approach relying on Clinical
Prior Experience and Sample Analysis factors that were
further confirmed through the probability distribution of sam-
ple images. Subsequently, a fusion attention block structure
delivers an advanced non-uniform sparse representation of
images [10]. Furthermore, a comprehensive depth domain
adaptive network known as DDANet incorporates integration
gradient CAM and attention guidance based on priori expe-
rience that enhances grading performance interpretability by
incorporating the high magnification innovative to alleviate
the overfitting problem [11]. A novel approach combining the

ViT and AMC blocks based on Hoeffding’s inequality with
adaptive model fusion and multiobjective optimization. This
approach resolved the issue of concurrent optimal feature
representation in ViT and AMC blocks. Finally, an adaptive
model fusion technique incorporates the metrics block and
the fusion block, aiming to enhance differences between fea-
ture representations and mitigate redundancy [12]. Another
Swin-Transformer algorithm devised an auxiliary diagnostic,
incorporating Focal Loss during training. It assessed the
diagnostic precision of the Swin-Transformer in comparison
to assessments by pathologists [13]. Furthermore, another
proposed adaptive model fusion method comprises multi-
objective optimization, adaptable feature representation met-
rics, and flexible feature fusion. This approach markedly
enhances the fusion capabilities of the model [14]. The
motivation behind the proposed model is the following
consideration

• Retinitis Pigmentosa is a degenerative eye disease that
affects the retina, leading to vision loss. The motivation
may be to contribute to the improvement of medical
diagnosis and early detection of RP using advanced
technology.

• Traditional methods of diagnosis may be challenging
due to the complexity and diversity of retinal abnormal-
ities associated with the disease.

• Deep learning models have shown significant success
in image classification tasks, especially in medical
imaging. The motivation could be to leverage the
capabilities of such models to enhance the accuracy and
reliability of RP detection in color fundus images.

• The goal may be to create an automated screening tool
that can assist healthcare professionals in quickly and
accurately identifying signs of RP.

• Successful implementation of an accurate deep learning
model for RP detection has the potential to positively
impact clinical practices, leading to earlier diagnoses,
improved patient outcomes, and more efficient use of
healthcare resources.

This study presents an approach for automatic and accurate
classification of RP disease using specialized neural network
architecture, the squeeze-and-excitation ResNet (SE-ResNet)
block [15]. The SE-ResNet block is an extension of the
ResNet [16] architecture, augmented with a powerful squeeze
and excitation mechanism to enhance the learning that
performs segmentation and analysis of PS associated with
degeneration in RP. The network efficiently identifies PS on
the retina and precisely fragments these pigments, enabling
examination and determination of the disease’s growth rate.
Handling with the small number of pixels is a challenging
task such as retinal pigment signs are very small in RP.
The proposed method embraces a related deep feature
concatenation approach using SE block with a residual
learning model. By combining the SE block with the residual
blocks, the network can effectively capture and recalibrate
the channel-wise dependencies, allowing it to focus on the
most informative features while suppressing noise. In the
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squeezing step, the block reduces the spatial dimensions of
the feature map to a solitary value for each channel, typically
through global average pooling. This process aggregates the
channel-wise information, creating a compact representation
of the feature map. In the excitation step, the SE block
uses one or multiple fully connected layers to model the
channel dependencies. It generates a set of channel-wise
scaling factors that represent the relevance position of each
channel. In the end, the weight file is deployed and applied
to get the feature map that highlights the important channels
and restrains the less relevant ones. This study stands out from
existing methods in three significant ways:

• The proposed model enhances the expressive power of
effective learning of hierarchical features and residual
learning. This learning architecture helps address the
vanishing gradient problem and ensures accurate PS
detection even with limited pixels.

• It employs an SE block that introduces a channel-wise
attention mechanism. It adaptively recalibrates the
importance of different channels and suppresses less
relevant ones that enhance the feature quality with deep
feature extraction using concatenation.

• The proposed introduces only a small number of
additional parameters, making the training process
computationally efficient. The objective is to contribute
to the field of RP detection and analysis using color
fundus imaging. It enhances making it feasible for
deployment in practical application and treatment of this
disease.

• The proposed model emphasizes the color fundus
imaging dataset for RP analysis, detecting abnormalities
in the vessel, and distinguishing it from OCT-based RP
detection algorithms.

• The proposed network achieves fine segmentation
results even on inferior-quality color fundus images,
aiding ophthalmologists and medical practitioners in
detecting and analyzing RP growth in patients.

The remaining parts of the paper are organized as follows.
In Section II, related work in the field of automated RP
detection and deep learning-based frameworks is presented.
Section III describes the architecture of our proposed
architecture, including the SE-ResNet block and the dataset
used for training. Section IV presents the experimental
details, as well as, the discussion on results and Section V
presents the conclusions of our work.

II. RELATED WORK
Retinal analysis encompasses retinal vessel division and opti-
cal disk identification, both of which have been particularly
imperative tasks and have been extensively explored in the
existing literature. However, there remains relatively scarce
research dedicated to analyzing retinal RP. Most existing
approaches tend to focus on analyses of optical coherence
tomography (OCT), fundus photography, autofluorescence
imaging, and electroretinography (ERG). The study [17]

has assessed the capacity of a deep convolutional neural
network (CNN) that can distinguish between ultrawide field
pseudocolor and autofluorescence color fundus images in the
case of RP. The model encompasses both RP-affected and
normal retina images that generated remarkable sensitivity
and specificity for producing a high-quality heatmap of RP.

A U-Net hybrid approach composed of primary segmen-
tation, coupled with a gliding window, is designed to refine
and rectify the segmentation error made by the U-Net [18].
This model underwent training to classify entirely pixel
values within the tested B-scans. For comparison of layer
boundary lines, Bland-Altman, and correspondence analysis
were performed to segment photoreceptor outer length.
ACNNmodel was applied to differentiate between two visual
acuities with a notable degree of sensitivity and specificity
in [19]. It successfully recognized visual damage using a
visual acuity threshold that demonstrates the capability to
anticipate the correlation between retinal and visual function
in persons tormented by RP.

An algorithm accompanied the segmentation of eight
retinal sheets within RP data by releasing limitations on
the thickness and smoothness of each layer [20]. A random
forest classifier is trained using the RP dataset to assess
edge probabilities. Then a graph search algorithm to identify
the optimal set of nine surfaces that best align with the
data [20]. An alternative combined method, called U-Net,
evaluated the effectiveness of the group transformer for
segmenting pigment signs in fundus images in [21]. This
architecture incorporates multi-head self-attention hunks
within the convolutional layers of both the narrowing and
escalating tracks of the network, thus altering the classical
U-Net framework. Moreover, within another hybrid model
of CNN transformation, the group transformer U-Net was
employed and explored to analyze the influence of different
loss functions and parameter adjustments on the learn-
ing process. Interestingly, the results indicated significant
enhancements, demonstrating a clear superiority of this
hybrid architecture [22].

A dense U-Net segmentation model was specifically
designed to accurately delineate the choroid layer and
vessels within the RP dataset in [23]. So, this automated
system to quantify choroidal factors in OCT images of
RP-affected eyes was comprised of the overall choroidal area
and thickness, stromal area, and luminal. The study [24]
developed a two-stage model that was trained on independent
x-ray photos from microperimetry. This approach used two
techniques: manual and artificial alignment. For manual
alignment, proprietary software was utilized to label six
significant points situated at the vessel. The identification
of cone boundaries was achieved through a deep learning
segmentation technique. Subsequently, cone centers were
determined using the extracted cone boundaries. To achieve
this, a custom-built adaptive optics scanning light was used
to capture non-confocal retinal fundus images. This imaging
process was conducted on two patients diagnosed with
confirmed RHO-associated RP [25].
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TABLE 1. Literature overview of studies that addressed different issues using different methods and techniques to support the diagnosis of RP disease.

A novel CD support system was introduced, utilizing
machine learning and cross-validation to assist in the identifi-
cation of inherited diseases in pediatric patients. This innova-
tive technique combined a specialized device, a pupillometer
with a custom-designed support system. Two individual
SVMs were employed per eye to categorize data obtained
from pupillometrics. The CDSS was specifically applied
for the identification of RP in pediatric individuals [26].
OCT angiography is a modern technology that allows
non-invasive visualization and quantitative evaluation of the
vascular network within the retinal and choroidal regions.
The progress of OCTA has furnished valuable insights into
the fundamental mechanisms driving the pathogenesis of RP.
A hypothesis was proposed with four phases and pinpointing
two significant aspects: vascular dysfunction and microglia
stimulation [27]. A multiclass model was generated using
saliency maps to gauge the design of AutoML models using
a publicly available image dataset with labels. Google Cloud
AutoML vision platform underwent to identify and remove
low-quality and mislabeled images from the dataset before
training. Multi-binary models were created to distinguish
between diseased and normal fundus images [28]. Different
techniques and issues studied in the literature review are
described in Table 1.

III. DESIGN OF PROPOSED MODEL
The detection and classification task serves as the foun-
dation for various computer visualization tasks such as
object detection, classification, recognition, segmentation,
and more. CNNs conduct image classification by first
detecting fundamental features like edges and curves at

lower levels and progressively combining them to form
more intricate concepts through successive convolutional
layers. The proposed network investigates a different aspect
of squeeze and excitation [15] with residual learning that
achieves precise pixel-wise classification by using a pixel
classification layer to mark the detection pixels and improves
the quality of representation by using interdependencies
between the channels of its convolutional filters. The
proposed method benefits from deep feature concatenation,
and feature recalibration, and enables the net to import
and combine extraordinary info from various layers. This
design is highly effective in learning global information and
suppresses less useful ones for accurately making saliency
maps and classifications even in challenging scenarios.
Notably, the proposed net directly gets the original color
fundus images as input and outputs the detected retinal
saliency mask with classification results. Figure 1 depicts the
flowchart of the proposed model, illustrating the capturing of
color fundus images, model training, validation, and testing
phases.

A. SE-RESIDUAL LEARNING FOR PS SELECTION
PS region displays elevated values for both the pronounced
darkness degree and well-defined edge strength. It can be
deduced that the corresponding values surpass the average
darkness degree and edge entropy values exhibited by typical
color fundus regions. To effectively perform PS detection,
neural networks need to be deep, often containing numerous
convolutional layers. CNN employs the low-level pixel-
wise features extracted in the initial stages to generate a
potential PS, candidate of higher-level features, enabling it
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FIGURE 1. Visualization of the flowchart of the proposed model, illustrating the capturing of input color fundus images, training,
validation, and testing phases.

to recognize and identify pixel signs in the color fundus
diseased image. CNN’s layers leverage their convolutional
filters to extract spatial and temporal information from the
color fundus images. However, as these layers process data,
theymay gradually lose spatial information at each operation.
The widely recognized method for addressing this problem
is through feature empowerment using ResNet. Figure 2
presents the schematic representation of the proposed model
having residual and SE blocks.

This approach incorporates a skip connection based on
summation that allows the input data to flow directly to the
output information, bypassing one or more layers. That aids
in alleviating the vanishing gradient problem and allows the
network to learn residual features, resulting in significant
performance improvement in PS recognition tasks. We begin
by considering the implementation of SE blocks with residual
networks which can directly employ transformation to the
non-identity branch of a residual block. In this context,
residual learning with SE block provides deep feature
concatenation and ensures an efficient flow of information
throughout the network for pixel-wise detection in RP.

The SE blocks aim to improve the pixel-wise detection
process by introducing an adaptive content-aware mechanism
that assigns weights to each channel based on its PS
contextual relevance. It is a functional component that can

be constructed based on transformation (Ftr), which maps
color fundus images to feature maps. In the context of
this notation, Ftr is considered a convolutional operator.
In addition to this, the SE blocks consider the importance
of each channel when calculating the saliency maps of PS
by summation through all channels. SE block performs two
actions. First, modeling channel interdependencies explicitly
develops the relationships between channels within layers to
better understand the connections between different features.
Second, feature recalibration selectively enhances useful PS
features and suppresses less relevant ones, allowing the
network to focus on the most informative aspects of the
pixel-wise PS region. These two strategies with residual
learning discussed above are developed in the design, which
performs classification and saliency generation of RP.

The SE block can be integrated with residual block
information to enhance the feature representation power of
CNNs by adaptively recalibrating the importance of each
channel in a feature map and improving the performance
of the network. The SE block can be inserted after the
convolutional layers of the residual block which makes it
easier for the network to learn identity mapping for the
optimization. The residual block processes the input through
one or more convolutional layers, capturing various features.
Through the utilization of four residual block operations
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FIGURE 2. Schematic representation of the suggested model with residual and SE blocks.

FIGURE 3. The scheme of the novel residual block (a), detail layers architecture with
residual block and SE block with multiple layers.

comprising 34 convolutional layers and four SE blocks with
fully connected layers.

Figure 3 shows the scheme of the original ResNet block.
Figure 3a shows detailed layers architecture with residual
block, and SE block with multiple layers is shown in
Figure 3b. The SE block performs global pooling, typically
global average pooling (GAP), on every single channel of the
feature map. This averages the values of each channel across
the entire spatial dimension. The pooled feature information
is then passed through two fully connected (FC) layers, called
the squeeze and excitation steps. The first FC layer decreases
the channel dimensionality, capturing the global context of
each channel. The second FC layer renovates the original
channel dimensionality and produces channel-wise weights
or importance scores for each channel. The channel-wise
weights are then used to reweight the original feature maps

generated by the residual block. The feature maps are scaled
by the corresponding channel-wise weights to highlight the
important channels and restrain the less relevant ones. The
re-weighted feature map information is then fed to the next
layer of the neural network for further processing or to
the next residual block for additional feature extraction.
After that, the ultimate feature maps are generated at a size
25 × 32 when applied to 500 × 600×3 representing a color
image from the SE-ResNet block. Table 2 depicts the SE-
ResNet with 34 depth layers. Layer-specific settings of the
proposed model are also listed in the table.

B. DATA ACQUISITION
This study focuses on detecting retinal pigments using
color fundus images to aid medical practitioners in the
early diagnosis of the rare disease RP. The experiments
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TABLE 2. SE-ResNet with 34 depth layers. Layer exact settings of the
proposed model are listed inside the table.

were conducted using the RIPS dataset, the only publicly
available real dataset taken by a Canon CR4-45NM Retinal
camera. It comprises 120 color fundus photos with a pixel
resolution of 1440 × 2160. In three different sessions,
a total of five photos per eye were captured at different
sections of the retinal color fundus images. These images
were captured from four patients over the course of three
sessions (3 sessions × 5 images). The intermission between
two successive sessions was six months and the total period
was one year. Among the 120 images, 90 depict cases of
RP, while 30 were of the healthy ones. The dataset exhibits
inconsistency in terms of color, balance, focus, sharpness,
and contrast. Two manual ‘Binary Masks’ were created by
two ophthalmologists for each color fundus image, marking
foreground regions representing pigment signs [29].

C. DATA AUGMENTATION
CNN models possess formidable capabilities when trained
on extensive datasets; the greater the dataset size, the
higher the CNN’s performance. However, in the case of RP,
obtaining an abundant number of color fundus images can
be challenging due to their scarcity and privacy concerns
associated with acquiring them from hospitals. Regrettably,
there is a limited availability of publicly accessible datasets
for RP. Consequently, CNN models face difficulties, leading
to overfitting when working with medical image datasets
that lack sufficient samples for training. To solve the
potential issues of overfitting or underfitting, we used the
cross-validation technique to make a more robust model and

enhance the generalization ofmodels. In the conducted exper-
iments, specifically, the proposed net underwent training
using three-fold sample images employing a 3-fold cross-
validation approach to evaluate the efficacy of the proposed
technique and was subsequently tested with the fourth fold,
all four folds were encompassing different patients. The
approach of four-fold with different patients was chosen
because images acquired from the same patient in different
sessions often exhibited considerable similarity. Including
such images in either the training or validation fold could
potentially lead to erroneous performance improvement.

Before applying the augmentation, a Gaussian blur filter
was used to smoothen, and randomly change the sharpness
of the images and help to reduce the high-frequency
noise. The proposed net underwent training using three-fold
images employing a 3-fold cross-validation approach and
was subsequently tested with the fourth fold, all four folds
encompassing different patients. As the three folds originally
comprised only 90 images including healthy and diseased
images of RP, that proved insufficient for effective training
of the proposed model. Artificial images were generated
through a data augmentation process similar to that used by
[30, 31]. Specifically, the 90 images from the three folds were
combined, resulting in 90 images that underwent horizontal
flips, creating an additional 90 images. This process yielded
a total of 180 images (original three folds images = 90,
H-flip = 90). Subsequently, these 180 images underwent
X = 5, Y = −5, conversion with a horizontal flip, resulting
in 360 images. Following this, the 360 images were subjected
to another round of X = −5, Y = 5, conversion with
vertical flip, producing a total of 720 images. The 720 images
from the previous stage underwent XY conversion at X = 10,
Y = 10 with a horizontal flip, resulting in a total of
1440 images. In the final step, underwent images were at
X = 10, Y = 10 conversion with vertical flip, resulting in
a grand total of 2880. Finally, we get 2880 diseased images
of RP and 960 healthy images.

TABLE 3. Provide a breakdown of the training dataset before and after
the application of data augmentation.

Table 3 provides a breakdown of the training datasets
before and after the application of data augmentation. The
representative images are shown in Figure 4.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
The training process was developed using Python pro-
gramming language which is a powerful machine learn-
ing platform. We used Python 2.7.0, tflearn, sklearn,

VOLUME 12, 2024 28303



R. Rashid et al.: Detectability Analysis of Retinitis Pigmetosa Using Novel SE-ResNet

FIGURE 4. Augmented sample images.

tensorflow, numpy, matplotlib to customize our proposed
model. Therefore, we prepared an NVIDIA Titan GPU (K80)
system with 12GB memory for training the trained detector.
The entire dataset consumed two hours for the training of the
proposed model.

TABLE 4. A breakdown of training dataset after the application of data
augmentation.

B. MODEL TRAINING
The proposed model is designed using residual and SE
block connectivity for the transfer of immediate information
between layers. This structure facilitates the rapid con-
vergence of the network with rich features for accurate
detection of PS. The training process was conducted from
scratch on augmented color fundus images excluding any
weight sharing from external networks. Given the original
dimensions of the image, which are 1440×2160, the training
network poses a challenge due to the constraints of GPU
memory. As a solution to this issue and to facilitate training
and testing of the model, the input color fundus images
were altered in size to 500 × 600 dimensions to compare
with it on GT1 & GT2. To tackle the problem of uneven
class distribution, we explore different approaches, both
within individual patches and across patches. The motivation
for incorporating GT maps could be rooted in improving
the model’s performance by providing additional guidance
during the training process. GT maps typically represent
the true distribution of certain features or characteristics
in the input data. By combining GT maps with Softmax,

the model may be better equipped to focus on relevant
regions or features that are crucial for the specific task
at hand. As for the ablation experiment, it is a common
practice in research to conduct ablation studies to evaluate
the contribution of specific components or techniques to the
overall performance of a model. The ablation experiment
used GT1 and GT2 maps demonstrates that the addition
of GT maps significantly improves performance and for a
comprehensive understanding of the findings. Specifically,
we employ a cross-entropy loss functionwith input-balancing
strategy.

Information about how long the proposed model was
trained. The criteria for stopping training were convergence,
performance metrics, or a fixed number of epochs. Details
about the hyperparameters used during training, such as
learning rate, batch size, and optimizer choice. The specific
methodology for hyperparameter optimization systematically
searches through a predefined grid of hyperparameter values.
Randomized search with cross-validation is used to evaluate
random sample hyperparameter combinations and select the
best-performing set. The entire dataset was split into batches,
and each batch covered every sample within it. Once all
data samples from all batches completed this process, one
epoch was concluded. An epoch represents the total number
of times the entire datasets are processed. In this study,
the training process involved 50 epochs and a batch size
of 15 images in each epoch. Notably, the proposed model
began to converge after 46 epochs and reached stability at
50 epochs. The ultimate features extracted from the last
fully connected layer generated 128 × 1024 outputs which
served as input for the softmax layer. The model derived
decision weights based on accurate probabilities computed
by the softmax layer. These weights were then utilized to
make the detection decision. The cross-entropy loss function
produces the established output results, representing the
posterior probability of the target class. In order to preserve
the advantages of the Adam optimizer in comparison to the
conventional stochastic gradient descent, we opted for Adam
as an optimizer, setting the starting learning rate to 0.001.
The constant learning rate during the training with an epsilon
value was 0.00001. Hyperparameter optimization is carried
out using the GridSearchCV method. The detail of stopping
hyperparameters is shown in Table 5.

TABLE 5. The details of hyperparameters that stop the training process.

C. EVALUATION METRICS
Various evaluation metrics are utilized to evaluate the perfor-
mance of the proposed model. Sensitivity quantifies the ratio
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of actual positive cases correctly identified by an analytical
test. Specificity gauges the ratio of correctly identified actual
negative cases by a diagnostic classifier. These metrics rely
on true positive (TP), signifying the number of images
correctly categorized as RP disease, true negative (TN),
indicating the number of images accurately identified as
normal color fundus images, false positive (FP), indicating
the number of images incorrectly assigned as RP, and false
negatives (FN), showing the number of images erroneously
categorized as healthy color fundus. In detail: accuracy,
sensitivity, specificity, and f-measure are calculated using

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(1)

Sensitivity =
TP

TP+ FN
(2)

Specificity =
TN

TN + FP
(3)

D. RESULTS
The training set, consisting of 2880 images with RP and
960 images without RP disease, was employed for model
training. The dataset was arbitrarily divided into training and
testing sets using an 80%-20% split, resulting in 2304 RP
and 768 normal color fundus images used in training and
validation. Additionally, a separate test dataset, compris-
ing 576 RP and 192 normal color fundus images, was utilized
to assess the trained model. The division ensured that the
dataset’s quality remained intact while achieving improved
recognition results. In training, to validate the effectiveness
of our model, a 5-fold cross-validation technique is employed
on the 80% training dataset, which is usually pretty accurate.
The 5-fold cross-validation technique decreases the size
variance between the training set and the resampling subset
and leads to a smaller bias. To assess the efficacy of our
model, we employed the extensively augmented version of
the RIPS dataset.

The results indicate a strong and consistent classification
performance and showcase the model’s ability to accurately
identify even the rare conditions of RP (PS) in retinal color
fundus images. Evaluation of dataset performance is depicted
in the confusion matrix and ROC based on training and
testing. The confusion matrix’s statistics are used to describe
the classification assessment of the proposed model on the
RIPS dataset with accuracy 100%, 99.89%, 99.16%, and
99.37% based on training and testing with true values of
GT1 & GT2. The accuracy of the model is found to be a
confusion matrix that is particularly valuable when dealing
with an imbalanced dataset or when different types of errors
have varying levels of significance. The receiver operating
characteristic (ROC) values indicate themodel’s performance
in discriminating between the two classes and serve as a
measure of the model’s overall accuracy and effectiveness in
retinal PS segmentation of RP.

Figure 5 (1st row) confusion matrix and Figure 5 (2nd
row) ROC curves illustrate the proposedmethod performance
based on the training and testing dataset, respectively, with
reverence to GT1 and GT2. As a result, the confusion matrix
and other evaluation metrics of the proposed model are
presented. The values of ROC AUC curves were found to
be 98.50%, 97.70%, and 98.00%, 97.80% based on training
and testing with known GT1 and GT2. Although the ROC
AUC for the test set is marginally lower than that of the
training dataset, it remains above 97%. ROC curves plot
the relationship between FPR and TPR. The linear blue line
represents the line of equal error rate (EER), where the TPR
is equal to the FPR that determines the balance between these
two rates. In this work, we utilized performance metrics such
as accuracy, sensitivity, specificity, and f-measure that can
evaluate the performance of diagnostic tests or classifiers
in RP disease. These metrics provide quantitative measures
of the test to detect the RP disease and specificity to rule
out individuals without the disease. It can help in assessing
the reliability and clinical utility of a diagnostic tool or
classifier and can aid in decision-making regarding diagnosis,
treatment, and patient management. In the context of RP
diagnosis, the AUC summarizes the overall performance of
a discriminatory power; meaning that the test can effectively
identify individuals with the disease.

Numerous experiments were conducted, involving the
training of the proposed model with different learning
parameters to comprehend the involvement of various
features to the ultimate identification outcomes. In the initial
investigation, we select a hybrid method that incorporates
the entire set of features to evaluate the importance of
individual features by analyzing them within the SE-ResNet
network. We conducted a comparative evaluation of the
model with five other models. Notably, from Table 6, random
forest and AdaBoost.M1 [29] exhibit enhancement in accu-
racy (99.45%, 99.44%, 99.35%) and specificity (99.65%,
99.51%) on more than 250 trees component based training.
Although 250 trees represent the best selection, it escalates
computational expenses without proportionally advancing
performance. On the other side, the proposed model deter-
mines the optimal number of SE-ResNet 34 layers required
for achieving a balance between performance metric values
and computational costs, encompassing execution time and
memory. As far as our understanding extends, standard and
normal validation [30] was the first approach regarding the
automated identification of PS in color fundus images in the
literature and yields significant outcomes (88.58%).

Table 6 reports the qualitative results according to the
standard indexes of accuracy, specificity, sensitivity, and
f-measure for the identification of PS using GT1 & GT2
as a basis on the same dataset. In accordance with the
data presented in Table 6, the proposed model showcases
higher levels of sensitivity, specificity, f-measure, and the 2nd
highest accuracy compared to state-of-the-art methodologies,
but the achieved accuracy by the proposed model is 0.29%
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FIGURE 5. Overall dataset performance presents in confusion matrix and AUROC curves. Confusion matrix of the proposed model based on
training and testing dataset (1st row). ROC AUC curves for the suggested model on training and testing dataset (2nd row).

TABLE 6. Effectiveness of the proposed model and other five state-of-the-art methodologies with different variations on RIPS datasets. Among the colors
used, red signifies the top-performing outcome, followed by blue representing the second-best, and green indicating the third-best.

lower than that of the preceding component based on
random forest [29]. Furthermore, results indicate superior
performance of the proposed model over the earlier methods
RPS-Net [31], deep CNN [32], and U-Net [33], all applied on
the same dataset. FN carries greater significance than FP, and
the erroneous pixels classified as FN are assessed using the
sensitivity. Based on the information, presented in Table 6,
it is obvious that the proposed model demonstrates a high
sensitivity, indicating its ability to minimize the occurrence of
FN pixels. Training the proposed network involved utilizing
three out of the four folds for training, while the remaining
fold was reserved for testing. The results of testing data are
shown in Table 6.

E. DISCUSSION
RP is a gradual retinal deteriorating condition marked by the
gradual decline of photoreceptors and the subsequent loss

of these cells. During the intermediate phase of the disease,
distinctive pigment signs become evident on color fundus
examination. Fundus color photos are further categorized
by a multitude of distortions and posing complexity for
segmentation and classification analysis. In the case of RP,
the classification of pigment signs becomes notably arduous
due to the significant variability in color and shape that it
can manifest. In later stages, color fundus examination shows
extensive retinal degeneration. Moreover, RP exhibits genetic
heterogeneity that complicates the diagnosis. Due to these
challenges, the proposedmethod aims to automate the finding
of RP by SE-ResNet learning-based techniques that identify
PS in retinal color fundus images. The objective of this
study is to determine if this approach can effectively tackle
the thought-provoking task of identifying small numbers of
pixels amidst a highly variable background. In most cases,
PS manifests as compact regions containing a limited number
of pixels, this trait has also been observed in other types

28306 VOLUME 12, 2024



R. Rashid et al.: Detectability Analysis of Retinitis Pigmetosa Using Novel SE-ResNet

FIGURE 6. Visual outcomes and saliency maps of retinal PS at different layers with respect to GT, were achieved using the proposed model,
where FP is indicated in green and FN is indicated in red.

of indicators, such as exudates in diabetic retinopathy. When
dealingwith such small regions as PS regarding the utilization
of pixel-level validation for assessing that are accurately
detected, border pixels might be inaccurately labeled as FP
or FN.

Visualization techniques similar to Grad-CAM can be
employed to gain insights into the predictive regions cor-
responding to true positive (TP) and true negative (TN)
outcomes. By comparing these predictive regions with find-
ings in medical literature, it becomes possible to assess the
alignment between observed predictive regions and existing
knowledge documented in the literature. This comparative
analysis aims to validate and corroborate the identified
predictive regions with information already established in
the medical field. Another notable benefit of consolidat-
ing small regions based on their visual attributes is the
inherent resilience of our approach to channel fluctuations,
as numerous existing approaches in the literature require
the implementation of multi-scale processing to achieve
comparable robustness.

Figure 6 displays the visual outcomes of retinal pigment
signs at the grey level achieved using the proposed model.
It is also important to highlight that in cases concerning a
healthy color fundus image, the f-measure and sensitivity
metrics hold less importance due to the balanced relationship
between TP and FN, resulting in comparable values for
accuracy and specificity. Consequently, assessments were

performed separately for both healthy color fundus images
and images exhibiting PS to ensure accurate evaluation.
To differentiate between PS and normal fundus area in
RGB color fundus images, we examined regional features or
attributes that are derived solely from the spatial organizes of
pixels in the whole image region. In the end, the grey-scale
information can be extracted from a solo channel, potentially
yielding up to three changed feature levels. Nonetheless,
the blue color typically lacks valuable information for the
classification of PS in RP. Furthermore, the grayscale values
in images reflect the original pixel intensities, while the
corrected grayscale values in the image offer more insightful
information concerning the contrast between the region and
its neighboring regions. Several grey-level features involve
computation utilizing either the boundary or vicinity of the
image regions. This approach contributes to the robustness
of the method as evidenced by the achieved results. Notable,
qualitative assessment reveals that even trivial pigment signs
are effectively classified by the proposed method.

Identifying the regions that lead to FP and FN is a critical
step in understanding model errors and improving their
performance. Generating saliency maps can highlight regions
of interest and regions influencing the decision. Ground
truth annotations are overlayed on the images to compare
the predicted regions with the actual disease locations. This
step is crucial for identifying regions where the model made
errors.
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The limited number of patients and the potential lack of
generalization to real-world scenarios is a valid one. Firstly,
generalizability is a crucial aspect, but the proposed model
trained on diverse datasets by getting the data augmentation
techniques that perform well on unseen data beyond the
training set in real-world scenarios. Secondly, intra-patient
variability is considered by acquiring the images from mul-
tiple sessions and different times for each patient. To assess
the clinical relevance and effectiveness of the ML model, it is
crucial to compare its outputs with the assessments made by
human experts or clinicians. This helps in understanding the
model’s performance in a real-world context and it alignswith
the expertise of medical professionals. It may be a limitation
of the study and other compared models are also used in
similar scenarios.

F. LIMITATIONS OF STUDY
Analysis of RP using a SE-ResNet-based deep model and
fundus images is a promising approach to developing an
accurate detectability system, but still, it has some limitations
which are described as.

• We utilized the variant form of CNN learning models
that provide an accurate assessment, but other machine
learning algorithms need to be investigated to analyze
their performance for PS detection in comparison to the
proposed model.

• In a clinical setting, a complete systemmay be necessary
with the deployed model for real-time processing of
fundus images.

V. CONCLUSION
This study introduces a deep CNN architecture tailored
explicitly for the detection of retinitis pigmentosa, a retinal
eye disease, using color fundus images. By incorporating
residual learning deep features with SE blocks, the proposed
model enhances its representational capacity. The SE blocks,
in particular, enable dynamic channel-wise recalibration and
address feature dependencies, thus improving the segmenta-
tion of retinal pigment signs, even those with a limited pixel
presence in the pigment area. By reducing the number of
residual blocks and incorporating SE blocks, we enhanced
feature quality while optimizing memory usage and minimiz-
ing information loss. The proposed network adeptly estimates
the saliency of retinal pigment signs through RP analysis.
With its notable sensitivity and specificity in detecting eyes
affected by RP, this model holds the potential to aid medical
practitioners in the timely and detailed assessment of the
disease’s progression and severity.
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