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Abstract: Twenty years after its discovery, hepcidin is still considered the main regulator of iron
homeostasis in humans. The increase in hepcidin expression drastically blocks the flow of iron, which
can come from one’s diet, from iron stores, and from erythrophagocytosis. Many anemic conditions
are caused by non-physiologic increases in hepcidin. The sequestration of iron in the intestine and in
other tissues poses worrying premises in view of discoveries about the mechanisms of ferroptosis.
The nutritional treatment of these anemic states cannot ignore the nutritional modulation of hepcidin,
in addition to the bioavailability of iron. This work aims to describe and summarize the few findings
about the role of hepcidin in anemic diseases and ferroptosis, as well as the modulation of hepcidin
levels by diet and nutrients.
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1. Introduction

Hepcidin is a peptide hormone, consisting of 25 amino acids in the bioactive form
with a molecular weight of 2.8 KD [1,2]. It is mainly synthesized by the liver and excreted
by the kidneys; under physiological conditions, it reaches plasma concentrations between 2
and 20 nM [1–4].

The receptor of hepcidin is ferroportin, which consists of 571 amino acids and has
a molecular weight around 65–70 KD. It is a channel that permits the efflux of elemental
iron from cells to the plasma and is formed by two transmembrane domains (each with
six alpha-helices) and a lysine-rich cytoplasmic loop [2,5,6]. Ferroportin is expressed
on the basolateral membrane of duodenal enterocytes, in macrophages responsible for
erythrophagocytosis (i.e., Kupffer cells and red pulp cells of the spleen) in hepatocytes
and other cells of iron-store tissues [7,8]. The binding of hepcidin to ferroportin blocks the
flow of iron by both a short-term and a long-term mechanism. In the first case the ligand
generates an immediate steric hindrance, closing the open conformation of the channel [7,9].
In the second case, hepcidin triggers endocytosis and ubiquitination in the lysine residues
of the cytosolic loop by Rnf217 ligase E3, resulting in channel degradation [2,8]. Recently,
a novel mechanism has been identified for Rnf217, considered as a E3 ubiquitin ligase,
which is able to mediate the degradation of the iron exporter ferroportin and regulate iron
homeostasis [10].

Since ferroportin is the only known cellular iron export system, plasma hepcidin
fluctuations regulate the actual amount of dietary iron absorbed, released from stores,
present in the recycling system, and made available to erythropoiesis [2,6].

The aim of this work is to summarize the few recent findings about the role exerted by
hepcidin on anemic diseases and ferroptosis, as well as the modulation of hepcidin levels
by diet and nutrients.
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2. Regulation of Hepcidin Release

Hepcidin release is crucial for maintaining iron homeostasis and is controlled by
several mechanisms (Figure 1).
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Figure 1. Main mechanisms involved in the regulation of hepcidin release. Increased iron accumula-
tion in the liver stimulates hepcidin expression through two mechanisms, which converge during
the activation of the SMAD4 factor. SMAD4 is the last player of the BMP/SMAD pathway, activated
both by the increase in cellular iron in endothelial cells, which releases BMP-2 and BMP-6, and by
the formation of the HFE-TRF2 complex in hepatocytes, after binding to holotransferrin. Inflamma-
tion, with its cytokines, can increase expression of hepcidin through various transcription factors:
TGF-β acts on SMAD4; IL-1β stimulates C/EBP δ; and IL-6 actives STAT3. Even mild or moderate
hypoxia, with increased NOX4 activity, can increase hepcidin release by activating STAT3. Increase
in NOX4 activity acts on reticular stress, which stimulates hepcidin synthesis with the activation of
the CREBH factor. The same factor is also involved in the metabolic responses induced by fasting.
Finally, other molecules such as ERFE, sirtuin-1, miR-NA-122 and PDGF-BB, inhibit the activation of
these transcription factors to varying degrees, reducing the expression of hepcidin. BMP/SMAD,
Bone morphogenetic protein/Small Mother Against Decapentaplegic; BMP-2, Bone morphogenetic
protein 2; BMP-6, Bone morphogenetic protein 6; cAMP, Cyclic Adenosine Mono Phosphate; C/EBP
δ, CCAAT Enhancer-binding protein δ; CREBH, Cyclic AMP-responsive element-binding protein
H; ER, Endoplasmic Reticulum; ERFE, Erythroferrone; Fe, iron; HFE, Hereditary hemochromatosis
protein; IL-1β, Interleukin 1 β; IL-6, Interleukin 6; JAK/STAT, Janus kinase/Signal Transducer and
Activator of Transcription; miRNA-122, micro Ribonucleic Acid 122; NOX4, NADPH Oxidase 4; Nrf2,
Nuclear factor erythroid 2-related factor 2; PDGF-BB, Platelet-derived growth factor-BB; PPARGC1A,
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 α; SMAD4, Small Mother Against
Decapentaplegic 4; STAT3, Signal Transducer and Activator of Transcription 3; TGF-β, Tumor growth
factor β; TRF1, transferrin receptor 1; TRF2, transferrin receptor 2.
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Two conditions mainly regulate the increase in plasma hepcidin levels: the iron
status of the body and the inflammatory process. On one side, the release of hepcidin
from the liver rises in response to increasing iron content in the body [11]. The liver can
detect, through two distinct systems, both the amount of iron deposited and the plasma iron
peaks [11]. Increased iron deposition in hepatic endothelial cells activates the Nuclear factor
erythroid 2-related factor 2 (Nrf2), which results in the expression of the paracrine signaling
molecules, such as Bone morphogenetic protein 2 (BMP2) and Bone morphogenetic protein
6 (BMP6) [12–14]. In particular, activation of the Nrf2, following an increase in cellular
iron, stimulates BMP6 synthesis [15]. In turn, in hepatocytes, BMP2 and BMP6 activate
the Bone morphogenetic protein-Small Mother Against Decapentaplegic (BMP/SMAD)
pathway in hepatocytes, which induces the expression of the hepcidin gene [11,16]. The
increase in plasma iron, through the increase in holotransferrin, is captured in hepatocytes
with the activation of the homeostatic iron regulator—transferrin receptor 2 (HFE-TRF2)
complex [17]. Homeostatic iron regulator (HFE) is a membrane protein complex expressed
in hepatocytes [18]; it can bind at different sites, including both Transferrin receptor 1
(TFR1) (ubiquitous high-affinity holotransferrin receptor) and Transferrin receptor 2 (TFR2)
(low-affinity holotransferrin receptor expressed predominantly in hepatocytes) [18–21].
Holotransferrin competes with HFE for binding to TRF1 and simultaneously stabilizes the
bond between HFE and TRF2 [21]. Consequently, an increase in plasma holotransferrin
causes the formation of the HFE-TRF2 complex, which activates the SMAD pathway [22].
Both systems, therefore, converge in the activation of the BMP/SMAD pathway, which
involves numerous molecules. The terminal effector is the transcription factor Small Mother
Against Decapentaplegic 4 (SMAD4), which promotes the expression of the hepcidin
gene [11]. SMAD4 also acts epigenetically, allowing for the methylation of lysine 4 in
histone H3, which opens chromatin and leads to transcription [23]. This epigenetic effect
renders SMAD4 also necessary in the stimulation of inflammation-mediated hepcidin
expression [11,23]. Therefore, the increase in hepcidin following inflammation may be
limited in the absence of iron.

On the other side, the inflammatory process involves an increase in hepcidin levels [24],
following an immune protection mechanism implemented by hypoferremia. Interleukin
(IL) 6 is mainly responsible for the increase in hepcidin expression, through the activation
of the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) [7,25].
Other inflammatory cytokines are also involved, such as IL-1β, IL-22, and Tumor growth
factor-β (TGF-β) [7]. IL-1β activates the transcriptional factor CCAAT Enhancer-binding
protein δ (C/EBP δ), which increases the expression of hepcidin and amplifies the acti-
vation of STAT3 and SMAD4 factors, thus stimulating the release of IL-6 and BMP2 in
hepatocytes [26]. Similarly, the TGF- β pathway involves the activation of SMAD proteins,
including SMAD 4 [27]. Inflammation is one factor that can trigger the Endoplasmic Reticu-
lum (ER) stress response. ER stress increases hepcidin expression through an independent
pathway that activates Cyclic AMP-responsive element-binding protein H (CREBH) fac-
tor [28]. Furthermore, a study conducted on mice demonstrated that fasting-induced
gluconeogenesis increases hepcidin levels precisely by stimulating CREBH/Peroxisome
Proliferator-Activated Receptor Gamma Coactivator 1 α (PPARGC1A) factors [29].

Hepcidin expression is also regulated by microRNAs. The main known candidate is
miRNA-122, expressed mainly in the liver [30]. In mice, miRNA-122 decreases hepcidin re-
lease, silencing the HFE and Hemojuvelin protein genes involved in SMAD4 activation [31].
A recent study conducted on mouse and human models showed that TGF-β1 drastically
reduces the levels of miRNA-122 in the liver through activation of the SMAD pathway [32].
The decrease in miRNA-122 contributes to the increase in hepcidin release during the in-
flammatory process. However, in some pathological states, such as cardiovascular fibrosis,
miRNA-122 stimulates the TGF- β pathway [33], which increases hepcidin release [27].
Further studies are necessary to clarify the role of miRNA-122 in relation to hepcidin.
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Other pathways are also involved in hepcidin expression. Sirtuin-1 is a deacetylase
implicated in the control of inflammation and oxidative stress [34]. It acts on STAT3 by
blocking the induction of hepcidin [35]. The erythropoiesis process reduces hepcidin levels
by increasing iron absorption. Many factors produced by erythrocytes are implicated,
such as Growth differentiation factor 15, Twisted gastrulation [36], and, in particular,
Erythropoietin (EPO), which promotes the synthesis of Erythroferrone (ERFE), which
binds to BMP-6 and switches off BMP-SMAD signaling [37]. The role of hypoxia is more
controversial. Chronic hypoxia, such as that which occurs at high altitude, down-regulates
the hepcidin gene by platelet-derived growth factor-BB (PDGF-BB) [38]. Conversely, mild or
pronounced hypoxia increases the release of hepcidin due to increased activity of oxidases
such as NADPH Oxidase 4 (NOX4). The major product of NOX4 is hydrogen peroxide,
which can activate the STAT3 factor [39]. Finally, a study demonstrated the ability of
Interferon-γ to reduce hepcidin expression in macrophages infected with siderophilic
bacteria [40].

3. Anemic States Characterized by the Increase in Hepcidin Release

Various conditions can favor an increased release of hepcidin and can cause a state of
anemia. For example, inflammatory anemia (IA) is associated with pathological conditions,
such as chronic inflammatory diseases, infections and malignant tumors. In these diseases,
the inflammatory pathway increases hepcidin levels. IA is a mild to moderate anemia,
usually normocytic, with low serum iron and transferrin, non-low plasma ferritin, and
hemoglobin rarely less than 8 mg/dL [41]. At the same time, senile anemia can in some
cases be an anemic condition caused by the increase in hepcidin. A European study showed
that senile anemia in hospital patients is more strongly associated with inflammatory
conditions and renal failure, rather than nutritional deficiencies [42]. Multiple factors can
increase hepcidin in the elderly: the stimulation of the inflammatory pathway in chronic
diseases or infections, the reduced production of EPO due to increased age [43] or due to
renal disease [44], and the decreased clearance of hepcidin in chronic renal failure [45].

Another type of anemia, characterized by increased hepcidin, is associated with
obesity. The correlation between anemia and obesity has been widely discussed, and
several epidemiological studies have confirmed this association [46–48], although, obesity
and anemia were not correlated in Chinese women [49] and in children in Tajikistan [50].
However, the peculiarity of the social and food context in which these surveys were
conducted could partly explain the discrepancy in the results.

Obesity generates low-grade systemic inflammation with an increase in IL-6 [51].
Increasing leptin in individuals with obesity may also stimulate hepcidin release [52].
In fact, hepcidin is higher in individuals with obesity than in individuals with normal
weight [53,54]. Nonetheless, a study conducted on children with obesity demonstrated that
the increase in hepcidin is not accompanied by a significant increase in IL-6, underestimat-
ing the role of hepcidin in anemia [55]. Other factors can influence hepcidin level in obesity,
such as IL-10, IL-1β and miRNA-122. In adolescents with obesity, the decrease in IL-10
and the increase in IL-1β [56] stimulate hepcidin release, while in childhood obesity, the
increase in miRNA-122 [57,58] can limit hepcidin levels [31].

Increased hepcidin plays a role also in diabetes-associated anemia. Clinical practice
demonstrated improvements in anemia in type 2 diabetes following the administration of
the Sodium–glucose cotransporter 2 inhibitor [59]. This drug decreased hepcidin both by
increasing EPO levels [60] and by stimulating the expression of sirtuin-1 [61]. Increased
hepcidin in type 2 diabetes is related to nephropathy [44,45,62] but not alone. Insulin resis-
tance and prolonged gluconeogenesis in diabetes activate CREBH [63], which stimulates
hepcidin release [29].

Finally, many studies reported iron deficiency as a frequent condition in both profes-
sional [64,65] and non-professional [66] athletes, especially female ones. If left untreated,
iron deficiency can develop into anemia. Other factors can cause anemia in athletes, such
as increased plasma volume, increased body temperature, acidosis, gastrointestinal bleed-
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ing and increased hemolysis [67], although one study debunked the role of foot-strike
hemolysis in the anemia of marathon runners [68]. Despite this, iron deficiency is the
only modifiable factor to prevent sports anemia. Hepcidin plays a role in athletes’ anemia.
Many studies have reported the increase in hepcidin following high or moderate intensity
physical exercises [69]. In general, hepcidin levels peak 3 h after exercise, and return
to baseline levels after 6 h [69]. Multiple factors modulate hepcidin release in physical
activity. IL-6 increases in response to exercise [70–72] and stimulates hepcidin release [7,25].
Conversely, low serum ferritin limits hepcidin release [72,73]. Additionally, the type of
physical activity performed can influence the release of hepcidin through the production of
oxidative stress, both through the role of free radicals on STAT3 [39] and with the induction
of ER stress [28]. Intense and prolonged exercise increases oxidative stress [74] and favors
the increase in hepcidin. On the other hand, regular and moderate physical activity reduces
the production of free radicals [75]. In sports, hepcidin can increase due to the activation
of the CREBH pathway [29]. A recent study conducted on mice demonstrated how the
depletion of glucose reserves during physical activity stimulates the release of hepcidin,
through gluconeogenetic signals [76]. The increase in hepcidin levels after sporting activity
can reduce the availability of iron introduced by diet or supplements, and promote both
iron deficiency and anemia.

4. Ferroptosis and Hepcidin

Ferroptosis is a form of autophagic cell death [77], involved in numerous pathological
states, such as tumors, neurodegenerative diseases and reperfusion injuries [78]. Ferropto-
sis is characterized by iron-mediated lipid peroxidation and by the inefficiency of reduced
glutathione and glutathione peroxidase 4 (GPX4). The cellular labile iron pool is crucial
in the mechanism of ferroptosis. Free iron produces radicals through Fenton reactions
and composes enzymes involved in lipid oxidation, such as Arachidonate lipoxygenase,
NADPH Oxidase and Cytochrome P450 [79]. Under physiological conditions, hepcidin
limits iron accumulation in the body and this should protect against ferroptosis. However,
an uncontrolled increase in hepcidin can contribute to an increase in cellular labile iron.
Hepcidin acts mainly on ferroportin, which is involved in the ferroptosis mechanism. A
study conducted on neuroblastoma cells treated with erastin demonstrated that the expres-
sion of ferroportin acted on ferroptosis, modifying the concentration of cellular iron. The
expression of ferroportin negatively modulated ferroptosis in cells, while the knockdown
of ferroportin enhanced the antitumor activity of erastin by increasing cellular iron [80].
In addition, failure to express ferroportin in the brain in mice led to the development of
an Alzheimer’s-like phenotype. The increase in ferroptosis led to the loss of memory and
neurons. Instead, increasing ferroportin expression reduces ferroptosis and improves mem-
ory [81]. Similarly, the deubiquitinase USP35 stabilized ferroportin and blocked ferroptosis
in lung cancer cells [82]. In contrast, miRNA 302-a 3-p induced ferroptosis in human
non-small cell lung cancer cells by inhibiting ferroportin expression [83]. Thus, ferroptosis
is promoted by the repression of ferroportin, which is the main action mediated by hep-
cidin. However, ferroportin is not the only link between hepcidin and ferroptosis. A study
performed on mouse models that simulate early damage after sub-arachnoid hemorrhage,
demonstrated that the increase in hepcidin stimulates the expression of the Divalent metal
transporter 1 (DMT1). The increase in DMT1, and the decrease in ferroportin, increases
cellular iron and promotes ferroptosis [84].

NOX4 Oxidase is another link between hepcidin and ferroptosis (Figure 2). Studies
on differentially expressed genes (DEGs) reported that the NOX4 gene is strongly related
to ferroptosis in colorectal cancer [85] and in gastric adenocarcinoma [86]. The increase
in the expression and activity of NOX4 increases oxidative stress [87], and this promotes
lipid peroxidation. However, in ferroptosis, lipid peroxidation is mediated by iron. Not
surprisingly, NOX4 induces the increase in hepcidin [39], and therefore increases the
amount of cellular iron. It is plausible to think that the strong correlation between the
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expression of NOX4 and ferroptosis is due to the increase in cellular iron, ensured precisely
by the increase in hepcidin levels (Figure 2).
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5. Nutritional Modulation of Hepcidin

Classical nutritional treatment for anemia involves increasing iron intake by enhancing
dietary bioavailability and intake [88]. Foods rich in polyphenols, phytic acid, oxalic acid
and calcium are not recommended, as they reduce the intestinal absorption of iron. Instead,
foods that increase the intestinal absorption of iron, such as animal tissues, including
chicken, beef, pork, lamb and fish, and ascorbic acid, are recommended [88]. In anemias
characterized by hepcidin elevation, except in sports anemia, the iron reserve in the body is
often already abundant [41]. In these anemic states promoting iron absorption exclusively,
without considering hepcidin, can be ineffective or even dangerous in view of the link
with ferroptosis. On the contrary, knowing the nutritional modulation of hepcidin may
be beneficial. Some foods and nutrients have a known or potential ability to influence
hepcidin release, as shown in Table 1.

Table 1. Known nutritional modulation of hepcidin. EPA, Eicosapentaenoic acid; DHA, Decosa-
hexaenoic acid; IL-6, Interleukin 6; IL-1β, Interleukin 1 β; STAT3, Signal Transducer and Activator
of Transcription 3; Nrf-2, Nuclear factor erythroid 2-related factor 2; c-Jun, protein c-Jun; GPX,
glutathione peroxidase.

Foods Experimental Model Dose and Duration Effects on Hepcidin
Release Proposed Mechanisms Reference

Omega-3

EPA/DHA
Mycobacterium

tuberculosis-infected C3HeB/FeJ
mice

AIN-93G control diet
supplemented with EPA (44% of
total fatty acids) and DHA (28%
of total fatty acids) for 3 weeks

Decrease in hepcidin
levels in plasma

Reduction in IL-1 and
IL-6 [89]

Polyphenols-enriched foods and isolated polyphenols

Caffeine 2-month-old C57BL/6N mice
Daily intragastric administration

of caffeine (100 mg/kg body
weight) for 7 days

Decrease in hepcidin
levels in liver

Reduction in
IL-6/STAT3 [90]

Wine Patients with type 2 diabetes 300 mL of red wine daily for
3 weeks

Decrease in hepcidin
levels in plasma n.d. [91]

Tucum-do-
cerrado

(Bactris setosa
Mart.)

Wistar rats

AIN-93G diet supplemented with
150 g of the edible parts of the
tucum-do-cerrado fruit/kg of

diet for 12 weeks

Decrease in hepcidin
levels in liver Increase in Sirtuin-1 [92]

Dark leafy
vegetables Pregnant women n.a. Increase in hepcidin levels

in serum n.d. [93]

Melatonin 8-week-old C57BL/6J mice Intraperitoneal injection of
melatonin (10 mg/kg)

Increase in hepcidin levels
in serum

Increase in hepcidin gene
expression in liver

Increase in c-Jun
pathway [94]
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Table 1. Cont.

Foods Experimental Model Dose and Duration Effects on Hepcidin
Release Proposed Mechanisms Reference

Genistein
Zebrafish embryos

Human hepatocellular
carcinoma cells

7 µM from 28 to 52 for
Zebrafish embryos,

0–20 µM for HepG2 cells
Increase in hepcidin levels Increase in STAT3 and

SMAD4 [95]

Quercetin Male Sprague Dawley rats
Gavage or intraperitoneal

injection (50 mg/kg) for 5 h or
10 days

Increase in hepcidin levels
in liver n.d. [96]

Epigallocatenin3-
gallate Human and mouse hepatocytes

Treatment
(100–200 ng)/intraperitoneal
injection of epigallocatenin3-

gallate (100 µM)

Decrease in hepcidin
levels

Induction of small
heterodimer

partner-interacting
leucine zipper protein

[97]

Myricetin
Human hepatocellular carcinoma
cells, human embryonic kidney

cells, Male C57BL/6 mice

20 µg/mL for 12 h or
intraperitoneal injection of

quercetin (40 mL/kg)

Decrease in hepcidin
levels

Modulation of
BMP/SMAD signaling [98]

Spices

Curcuma Healthy male volunteers 6 g (corresponding to 120 mg of
curcumin) for 0.5–48 h

Decrease in hepcidin
levels in plasma n.d. [99]

Garlic Male Wistar rats Gavage (1 g/kg body weight) for
3 weeks

Decrease in hepcidin
levels in liver Increase in Sirtuin-1 [100]

Capsaicin Male Wistar rats treated with
streptozotocin to induce diabetes

Daily subcutaneous injection (1
mg/kg) for 12 weeks

Increase in hepcidin levels
in liver n.d. [101]

Vitamins

Vitamin C Human hepatocellular
carcinoma cells 50–100 µg/mL for 6 h Decrease in

hepcidin levels n.d. [102]

Vitamin D

Human hepatocellular carcinoma
PBMC monocytes

Male C57BL/6 mice
Healthy volunteers

5 nM for 6 h
Single intraperitoneal injections
(0.2 µg/g) Single dose of oral

vitamin D2 (100,000 IU).

Decrease in hepcidin
levels

Transcriptional
suppression of hepcidin

gene
[103]

THP-1 macrophage-like
monocytic cells

Patients affected by chronic
kidney disease

5–40 nM overnight
50,000 IU weekly for 12 weeks

Decrease in hepcidin
levels

Reduction in IL-1 and
IL-6 [104]

Zebrafish liver cells 200 pM for 72 h Decrease in hepcidin
levels

Inhibition of ferroptosis
and modulation of

Keap1–Nrf2–GPX4 and
NF-κB–pathways

[105]

Pregnant women 1000 IU daily for 14 weeks Decrease in hepcidin
levels in plasma n.d. [106]

Ultra-marathon runner 10,000 UI daily for 2 weeks No significant variation in
hepcicin levels n.d. [107]

Patients affected by chronic
kidney disease

8000 IU of cholecalciferol daily
for 12 weeks

No significant variation in
hepcicin levels n.d. [108]

Vitamin A

Wistar rats AIN-93G diet with or without
4000 IU/kg of diet for 57 days

Increase in hepcidin levels
in deficient animals n.d. [109]

BALB/c mice 3 or 15 mg/kg of retinoic acid for
14 days

Decrease in hepcidin
levels

Modulation of TLT-
4/NF-κB–pathways [110]

Young male Wistar rats 6 weeks No significant variation in
hepcicin levels n.d. [111]

Vitamin E C57Bl/6 male mice 450 mg/kg for 18 days Decrease in hepcidin
levels in plasma

Reduction in Nrf2
pathway [112]

Carbohydrates and fiber

Complex
carbohydrates

Endurance athletes 3–10 g/kg Increase in hepcidin levels
in serum Increase in IL-6 [113]

Endurance athletes 1.2 g/kg beverage (12 mL/kg,
10% carbohydrate beverage)

Increase in hepcidin levels
in serum Increase in IL-6 [114]

Endurance athletes 3–8 g/kg Variations time-dependent Increase in IL-6 [115]

Dietary fiber Patients affected by end-stage
renal disease

10 g daily of dietary fiber or
potato starch for 8 weeks

No significant variation in
hepcicin levels n.d [116]

Supplements

Bovine
colostrum Highly trained athletes 3.2 g (four capsules) daily for

6 months
Increase in hepcidin levels

in serum Increase in IL-6 [117]

n.a.: Not available; n.d.: not determined.
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For example, omega-3 fatty acids, in particular Eicosapentaenoic acid (EPA), Decosa-
hexaenoic acid (DHA) and their derivatives, are able to suppress the inflammatory process
through multiple mechanisms, including the reduction in the expression of inflammatory
cytokines [118,119]. Indeed, a recent study demonstrated the improvement of anemia
in mice infected with tuberculosis following the uncombined administration of Fe and
EPA/DHA for 3 weeks and a reduction in IL-6 and IL-1 levels [89], both involved in the
synthesis of hepcidin [7], even if a direct estimate of hepcidin in mice before and after
correction of anemia is lacking.

Regarding polyphenol-containing foods, coffee consumption is usually limited in the
diets of anemics. In fact, coffee polyphenols reduce the absorption of iron [88]. However,
in conditions characterized by an increase in hepcidin, coffee can improve anemia. In this
context, in a study conducted on mice treated with the daily intragastric administration of
caffeine for 7 days and then injected with lipopolysaccharide (LPS), caffeine suppressed
hepatic hepcidin expression and diminished its overexpression caused by LPS by inhibiting
the IL-6/STAT3 pathway [90]. Similarly, red wine, due to its high content of polyphenols, is
usually not recommended in the diet of anemic people [88]. Yet, the moderate consumption
of red wine for 3 weeks reduced the expression of hepcidin in healthy subjects and those
with type 2 diabetes [91], improving iron trafficking. Tucum-do-cerrado (Bactris setosa Mart.)
is another food rich in polyphenols typical of the Brazilian diet. In rats supplemented with
a tucum-do-cerrado-enriched diet for 12 weeks, this fruit has shown to reduce hepcidin
levels through multiple mechanisms, including increasing the activity of sirtuin-1 [92].
Similarly, dark leafy vegetables, also abundant in polyphenols, are normally recommended
for anemics as a source of folic acid and since they exert an iron-inhibitory effect, probably
due to the phenol- or phytate-mediated iron-chelating activity [120]. However, according
to a frequency study, performed on pregnant women, the high consumption of green leafy
vegetables increased hepcidin levels [93].

Malted oats are recommended in anemia due to the greater availability of iron [121], yet
habitual consumption of oats is associated with greater release of hepcidin [93]. This cereal
contains isoflavones, polyphenols that activate the Nrf2 pathway [122], which increases
the expression of hepcidin [11]. Furthermore, oats are rich in melatonin [123] which, in
mice treated with an intraperitoneal injection, has shown to induce the gene expression
of hepcidin in the liver and in serum levels through the activation of the transcriptional
protein c-Jun [94]. Finally, the different concentrations and combinations of polyphenols in
a food determine the effect on the release of hepcidin. Some polyphenols increase hepcidin
levels, while other compounds reduce its concentration. For example, in Zebrafish embryos
and in human HepG2 cells, quercetin treatment enhanced the level of hepcidin [95], and
similar results were found in rats with quercetin [96]. Conversely, epigallocatenin3-gallate
and myricetin led to a decrease in hepcidin levels in human and mouse hepatocytes [97]
and in human hepatocellular carcinoma cells, in human embryonic kidney cells and in
mice treated with LPS, respectively [98].

Some spices are also able to modulate hepcidin levels. Turmeric, in particular, showed
important potential effects. In healthy male volunteers, the administration of 6 g of cur-
cuma, corresponding to 120 mg of curcumin, reduced the serum levels of hepcidin for
up to 24 h, probably through the inhibition of STAT3 action [99]. Additionally, a study
conducted on male Wistar rats demonstrated that garlic increased plasma iron by inducing
the expression of ferroportin, as well as decreased hepcidin levels in liver [100]. In fact,
allicin, contained in garlic, may stimulate sirtuin-1 [124], which in turn suppresses the
expression of hepcidin [35]. On the contrary, the consumption of chili pepper, whose main
important component is capsaicin, may not be indicated in patients with anemia with in-
creased hepcidin. In this context, one recent study reported that the chronic administration
of capsaicin for 12 weeks increased hepcidin levels in the serum of diabetic mice [101].

The dietary intake of some vitamins can influence iron homeostasis through hepcidin.
The importance of vitamin C in the treatment of anemia is known, since it increases the
intestinal absorption of iron [88]. Even when not taken at the same time as foods rich in
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iron, vitamin C improves iron status in women [125]. It is plausible to think that this effect
is mediated by the modulation of hepcidin. In fact, vitamin C inhibited hepcidin expression
in human hepatocarcinoma cells [102] and reduced the levels of IL-6 in healthy persons
following acute exercise [126].

Additionally, the effects of vitamin D on hepcidin have been extensively investigated.
For example, in in vitro (human hepatocellular carcinoma and PBMC monocytes) and
in vivo (mice and healthy volunteers) models, vitamin D administration inhibited hep-
cidin expression by binding to the gene promoter [103] and by reducing the levels of IL-6
and IL-1β in macrophages treated with LPS and in patients affected by chronic kidney
disease [104]. Furthermore, a recent study reported the role of vitamin D in contrasting fer-
roptosis in Zebrafish liver cells [105]. Multiple observational studies report the association
between vitamin D deficiency, high hepcidin levels and anemia in conditions characterized
by inflammatory processes such as inflammatory bowel disease, acute infectious disease,
severe traumatic injury and healthy preterm infants [127–130], while in other cases, vitamin
D and iron deficiencies did not correlate with high hepcidin levels, even in the presence
of inflammation [131]. Furthermore, in a study of pregnant women, vitamin D supple-
mentation had no effect on hepcidin, ferritin and inflammatory status [106], however,
the adequate intake of vitamin D during pregnancy correlated with better hemoglobin
levels [132]. High-dose vitamin D supplementation improved iron status but did not affect
hepcidin levels in athletes [107] nor in patients affected by chronic kidney disease [108].
Therefore, the impact of vitamin D supplementation on iron homeostasis and hepcidin
concentrations needs to be further investigated.

Regarding Vitamin A, its deficiency has been correlated with increased hepcidin levels
in rats [109]. In accordance with this, the administration of retinoic acid in mice with inflam-
matory anemia improved anemia by reducing hepcidin and increasing ferroportin [110].
However, in the absence of inflammation, the relationship between vitamin A and hepcidin
seems less important, as reported in young male Wistar rats [111].

Vitamin E also plays a role in the expression of hepcidin: a recent study demonstrated
that a diet rich in vitamin E increased the expression of ferroportin in mice and reduced
hepcidin, through the suppression of the Nrf2 factor [112]. Understanding the role of
minerals in iron metabolism is just beginning, and further studies are needed.

The role of carbohydrates in regulating hepcidin release is still controversial. Stud-
ies on carbohydrate supplementation before, during and after physical activity reported
contradictory results on hepcidin levels [113–115]. In general, a low glycemic index diet is
associated with low hepcidin levels [93], an effect probably linked to the reduced inflam-
matory state [133]. A high consumption of dietary fibers is also correlated with a decrease
in hepcidin [93], perhaps due to an improvement in the microbiota, which counteracts
inflammation. In this context, a study conducted on patients with renal anemia reported
an improvement in anemia following the administration of dietary fiber, but without any
significant effect on hepcidin [116].

Finally, colostrum of animal origin can be a valid supplement to improve anemic
states characterized by an increase in hepcidin. A study demonstrated that a 6-month
supplementation of bovine colostrum improved iron homeostasis in female athletes. The
antioxidant action of colostrum reduced the levels of IL-6 and hepcidin in the group
receiving the supplement compared to the control. Hepcidin reduction improved the
availability of iron from the recycling system [117].

However, foods and nutrients that promote intestinal iron absorption, such as vitamin
C, could increase hepcidin release following the increase in iron in the body, exhibiting
a secondary modulation. Future studies are needed to ascertain this possible secondary
action of foods on hepcidin, and the impact on anemias.
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6. Conclusions

In the nutritional treatment of anemic states characterized by an increase in hepcidin,
the sole evaluation of iron intake, through diet or supplements, may be ineffective or
potentially dangerous due to ferroptosis. Conversely, considering hepcidin levels may
be beneficial. These patients generally have high iron stores in the body. The reduction
in hepcidin can improve the mobilization of accumulated iron, as well as promote the
absorption of dietary iron. Similarly, when the increase in hepcidin is accompanied by
iron deficiency, as in athletes, the decrease in hepcidin release increases the availability
of iron which comes from erythrophagocytosis and intestinal absorption. In both cases,
the reduction in hepcidin improves erythropoiesis, and counteracts the accumulation
of intracellular iron, preventing ferroptosis. Although knowledge about the nutritional
modulation of hepcidin is still at its early stages, it may offer interesting insights for
nutritionists and physicians, so further studies are strongly needed in order to gain further
insights about the effects of hepcidin on human health.
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