Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimizing the artificial cultivation of crops. The selection of sensors is important in order to ensure a better quality and yield in an automated artificial environment. There are many challenges involved in selecting sensors due to the highly competitive market. This paper provides a novel approach to sensor selection for saffron cultivation in an IoT-based environment. The crop used in this study is saffron due to the reason that much less research has been conducted on its hydroponic cultivation using sensors and its huge economic impact. A detailed hardware-based framework, the growth cycle of the crop, along with all the sensors, and the block layout used for saffron cultivation in a hydroponic medium are provided. The important parameters for a hydroponic medium, such as the concentration of nutrients and flow rate required, are discussed in detail. This paper is the first of its kind to explain the sensor configurations, performance metrics, and sensor-based saffron cultivation model. The paper discusses different metrics related to the selection, use and role of sensors in different IoT-based saffron cultivation practices. A smart hydroponic setup for saffron cultivation is proposed. The results of the model are evaluated using the AquaCrop simulator. The simulator is used to evaluate the value of performance metrics such as the yield, harvest index, water productivity, and biomass. The values obtained provide better results as compared to natural cultivation.
metadata
Kour, Kanwalpreet; Gupta, Deepali; Gupta, Kamali; Anand, Divya; Elkamchouchi, Dalia H.; Mazas Pérez-Oleaga, Cristina; Ibrahim, Muhammad y Goyal, Nitin
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, divya.anand@uneatlantico.es, SIN ESPECIFICAR, cristina.mazas@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2022)
Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation.
Sensors, 22 (22).
p. 8905.
ISSN 1424-8220