Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Artículos y libros Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica Abierto Inglés The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, crop maturity assessment, and disease detection. The cotton crop is an essential source of revenue for many countries highlighting the need to protect it from deadly diseases that can drastically reduce yields. Early and accurate disease detection is quite crucial for preventing economic losses in the agricultural sector. Thanks to deep learning algorithms, researchers have developed innovative disease detection approaches that can help safeguard the cotton crop and promote economic growth. This study presents dissimilar state-of-the-art deep learning models for disease recognition including VGG16, DenseNet, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet models. For this purpose, real cotton disease data is collected from fields and preprocessed using different well-known techniques before using as input to deep learning models. Experimental analysis reveals that the ResNet152 model outperforms all other deep learning models, making it a practical and efficient approach for cotton disease recognition. By harnessing the power of deep learning and artificial intelligence, we can help protect the cotton crop and ensure a prosperous future for the agricultural sector. metadata Faisal, Hafiz Muhammad; Aqib, Muhammad; Rehman, Saif Ur; Mahmood, Khalid; Aparicio Obregón, Silvia; Calderón Iglesias, Rubén y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, silvia.aparicio@uneatlantico.es, ruben.calderon@uneatlantico.es, SIN ESPECIFICAR (2025) Detection of cotton crops diseases using customized deep learning model. Scientific Reports, 15 (1). ISSN 2045-2322