relation: http://repositorio.uneatlantico.es/id/eprint/17140/ canonical: http://repositorio.uneatlantico.es/id/eprint/17140/ title: Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization creator: Kanwal, Khadija creator: Ahmad, Khawaja Tehseen creator: Shabir, Aiza creator: Jing, Li creator: Garay, Helena creator: Prado González, Luis Eduardo creator: Karamti, Hanen creator: Ashraf, Imran subject: Ingeniería description: The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance. date: 2025-03 type: Artículo type: PeerReviewed format: text language: en rights: cc_by_nc_nd_4 identifier: http://repositorio.uneatlantico.es/id/eprint/17140/1/s41598-025-90616-w.pdf identifier: Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Artículos y libros Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica Universidad de La Romana > Investigación > Producción Científica Abierto Inglés The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance. metadata Kanwal, Khadija; Ahmad, Khawaja Tehseen; Shabir, Aiza; Jing, Li; Garay, Helena; Prado González, Luis Eduardo; Karamti, Hanen y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, helena.garay@uneatlantico.es, uis.prado@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2025) Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization. Scientific Reports, 15 (1). ISSN 2045-2322 relation: http://doi.org/10.1038/s41598-025-90616-w relation: doi:10.1038/s41598-025-90616-w language: en